185 research outputs found

    A Kalman Filter based Low Complexity Throughput Prediction Algorithm for 5G Cellular Networks

    Full text link
    Throughput Prediction is one of the primary preconditions for the uninterrupted operation of several network-aware mobile applications, namely video streaming. Recent works have advocated using Machine Learning (ML) and Deep Learning (DL) for cellular network throughput prediction. In contrast, this work has proposed a low computationally complex simple solution which models the future throughput as a multiple linear regression of several present network parameters and present throughput. It then feeds the variance of prediction error and measurement error, which is inherent in any measurement setup but unaccounted for in existing works, to a Kalman filter-based prediction-correction approach to obtain the optimal estimates of the future throughput. Extensive experiments across seven publicly available 5G throughput datasets for different prediction window lengths have shown that the proposed method outperforms the baseline ML and DL algorithms by delivering more accurate results within a shorter timeframe for inferencing and retraining. Furthermore, in comparison to its ML and DL counterparts, the proposed throughput prediction method is also found to deliver higher QoE to both streaming and live video users when used in conjunction with popular Model Predictive Control (MPC) based adaptive bitrate streaming algorithms.Comment: 13 pages, 14 figure

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Traffic pattern prediction in cellular networks.

    Get PDF
    PhDIncreasing numbers of users together with a more use of high bit-rate services complicate radio resource management in 3G systems. In order to improve the system capacity and guarantee the QoS, a large amount of research had been carried out on radio resource management. One viable approach reported is to use semi-smart antennas to dynamically change the radiation pattern of target cells to reduce congestion. One key factor of the semi-smart antenna techniques is the algorithm to adjust the beam pattern to cooperatively control the size and shape of each radio cell. Methods described in the literature determine the optimum radiation patterns according to the current observed congestion. By using machine learning methods, it is possible to detect the upcoming change of the traffic patterns at an early stage and then carry out beamforming optimization to alleviate the reduction in network performance. Inspired from the research carried out in the vehicle mobility prediction field, this work learns the movement patterns of mobile users with three different learning models by analysing the movement patterns captured locally. Three different mobility models are introduced to mimic the real-life movement of mobile users and provide analysable data for learning. The simulation results shows that the error rates of predictions on the geographic distribution of mobile users are low and it is feasible to use the proposed learning models to predict future traffic patterns. Being able to predict these patterns mean that the optimized beam patterns could be calculated according to the predicted traffic patterns and loaded to the relevant base stations in advance

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    A novel non-intrusive objective method to predict voice quality of service in LTE networks.

    Get PDF
    This research aimed to introduce a novel approach for non-intrusive objective measurement of voice Quality of Service (QoS) in LTE networks. While achieving this aim, the thesis established a thorough knowledge of how voice traffic is handled in LTE networks, the LTE network architecture and its similarities and differences to its predecessors and traditional ground IP networks and most importantly those QoS affecting parameters which are exclusive to LTE environments. Mean Opinion Score (MOS) is the scoring system used to measure the QoS of voice traffic which can be measured subjectively (as originally intended). Subjective QoS measurement methods are costly and time-consuming, therefore, objective methods such as Perceptual Evaluation of Speech Quality (PESQ) were developed to address these limitations. These objective methods have a high correlation with subjective MOS scores. However, they either require individual calculation of many network parameters or have an intrusive nature that requires access to both the reference signal and the degraded signal for comparison by software. Therefore, the current objective methods are not suitable for application in real-time measurement and prediction scenarios. A major contribution of the research was identifying LTE-specific QoS affecting parameters. There is no previous work that combines these parameters to assess their impacts on QoS. The experiment was configured in a hardware in the loop environment. This configuration could serve as a platform for future research which requires simulation of voice traffic in LTE environments. The key contribution of this research is a novel non-intrusive objective method for QoS measurement and prediction using neural networks. A comparative analysis is presented that examines the performance of four neural network algorithms for non-intrusive measurement and prediction of voice quality over LTE networks. In conclusion, the Bayesian Regularization algorithm with 4 neurons in the hidden layer and sigmoid symmetric transfer function was identified as the best solution with a Mean Square Error (MSE) rate of 0.001 and regression value of 0.998 measured for the testing data set

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Quadri-dimensional approach for data analytics in mobile networks

    Get PDF
    The telecommunication market is growing at a very fast pace with the evolution of new technologies to support high speed throughput and the availability of a wide range of services and applications in the mobile networks. This has led to a need for communication service providers (CSPs) to shift their focus from network elements monitoring towards services monitoring and subscribers’ satisfaction by introducing the service quality management (SQM) and the customer experience management (CEM) that require fast responses to reduce the time to find and solve network problems, to ensure efficiency and proactive maintenance, to improve the quality of service (QoS) and the quality of experience (QoE) of the subscribers. While both the SQM and the CEM demand multiple information from different interfaces, managing multiple data sources adds an extra layer of complexity with the collection of data. While several studies and researches have been conducted for data analytics in mobile networks, most of them did not consider analytics based on the four dimensions involved in the mobile networks environment which are the subscriber, the handset, the service and the network element with multiple interface correlation. The main objective of this research was to develop mobile network analytics models applied to the 3G packet-switched domain by analysing data from the radio network with the Iub interface and the core network with the Gn interface to provide a fast root cause analysis (RCA) approach considering the four dimensions involved in the mobile networks. This was achieved by using the latest computer engineering advancements which are Big Data platforms and data mining techniques through machine learning algorithms.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Adaptive power control in CDMA cellular communication systems

    Get PDF
    Power control is an essential radio resource management method in CDMA cellular communication systems, where co-channel interference is the primary capacity-limiting factor. Power control aims to control the transmission power levels in such a way that acceptable quality of service for the users is guaranteed with lowest possible transmission powers. All users benefit from the minimized interference and the preserved signal qualities. In this thesis new closed loop power control algorithms for CDMA cellular communication systems are proposed. To cope with the random changes of the radio channel and interference, adaptive algorithms are considered that utilize ideas from self-tuning control systems. The inherent loop delay associated with closed loop power control can be included in the design process, and thus alleviated with the proposed methods. Another problem in closed-loop power control is that extensive control signaling consumes radio resources, and thus the control feedback bandwidth must be limited. A new approach to enhance the performance of closed-loop power control in limited-feedback-case is presented, and power control algorithms based on the new approach are proposed. The performances of the proposed algorithms are evaluated through both analysis and computer simulations, and compared with well-known algorithms from the literature. The results indicate that significant performance improvements are achievable with the proposed algorithms.reviewe
    • …
    corecore