60 research outputs found

    Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis

    Full text link
    [EN] An in-body sensor network is that in which at least one of the sensors is located inside the human body. Such wireless in-body sensors are used mainly in medical applications, collecting and monitoring important parameters for health and disease treatment. IEEE Standard 802.15.6-2012 for wireless body area networks (WBANs) considers in-body communications in the Medical Implant Communications Service (MICS) band. Nevertheless, high-data-rate communications are not feasible at the MICS band because of its narrow occupied bandwidth. In this framework, ultrawideband (UWB) systems have emerged as a potential solution for in-body highdata-rate communications because of their miniaturization capabilities and low power consumption.This work was supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) at the Universitat Politècnica de València, Spain; by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R); and by the European FEDER funds. It was also funded by the European Union’s H2020:MSCA:ITN program for the Wireless In-Body Environ-ment Communication–WiBEC project under grant 675353.Garcia-Pardo, C.; Andreu-Estellés, C.; Fornés Leal, A.; Castelló-Palacios, S.; Pérez-Simbor, S.; Barbi, M.; Vallés Lluch, A.... (2018). Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis. IEEE Antennas and Propagation Magazine. 60(3):19-33. https://doi.org/10.1109/MAP.2018.2818458S193360

    Characterization of path loss and absorption for a wireless radio frequency link between an in-body endoscopy capsule and a receiver outside the body

    Get PDF
    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss and absorption of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and three different human models are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-body to out-body WBAN systems. The specific absorption rate (SAR) in homogeneous and heterogeneous body models is characterized and compliance is investigated

    Wireless capsule gastrointestinal endoscopy: direction of arrival estimation based localization survey

    Get PDF
    One of the significant challenges in Capsule Endoscopy (CE) is to precisely determine the pathologies location. The localization process is primarily estimated using the received signal strength from sensors in the capsule system through its movement in the gastrointestinal (GI) tract. Consequently, the wireless capsule endoscope (WCE) system requires improvement to handle the lack of the capsule instantaneous localization information and to solve the relatively low transmission data rate challenges. Furthermore, the association between the capsule’s transmitter position, capsule location, signal reduction and the capsule direction should be assessed. These measurements deliver significant information for the instantaneous capsule localization systems based on TOA (time of arrival) approach, PDOA (phase difference of arrival), RSS (received signal strength), electromagnetic, DOA (direction of arrival) and video tracking approaches are developed to locate the WCE precisely. The current article introduces the acquisition concept of the GI medical images using the endoscopy with a comprehensive description of the endoscopy system components. Capsule localization and tracking are considered to be the most important features of the WCE system, thus the current article emphasizes the most common localization systems generally, highlighting the DOA-based localization systems and discusses the required significant research challenges to be addressed

    의료용 인체 삽입물을 위한 무선 저전력 송수신기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 남상욱.This thesis presents the wireless transceiver for medical implant application. The high propagation loss in human body which has high relative permittivity and conductive makes the implantable device be required for high sensitivity. Moreover, the device should have low power consumption to use for wireless implant medical application due to a restricted battery life. Also, this problem should be solved for on-body device considering integration with mobile device in the future. Simultaneously, the specific medical application such as epiretinal prosthesis, multi-channel electroencephalogram sensor demand high-data rate. Therefore, it is a main challenge that enhancing the devices power consumption and data-rate for implantable medical application. In order to enhance the performance of the device, several techniques are proposed in implantable human body transceivers. Firstly, the propagation loss in human-body is calculated for determine the frequency for medical implant application. The frequency bands allocated by FCC or MICS are too narrow and high lossy bands in human-body. For this reason, the optimum frequency for Implantable medical device is found by using Frisss formula and the link budget is calculated for capsule endoscopy system. The optimum frequency is verified through image recovery experiment in liquid human phantom and pig by using designed capsule endoscopy system. Secondly, the Super-Regenerative Receiver (SRR) with Digital Self-Quenching Loop (DSQL) is proposed for low power consumption. The proposed DSQL replaces the envelope detector used in a conventional SRR and minimizes power consumption by generating a self-quench signal digitally for a super-regenerative oscillator. The measurement results are given to show the performance of the proposed receiver. Thirdly, the RF Current Reused and Current Combining (CRCC) Power Amplifier (PA) is proposed for low power and high-speed transmitter. Normally, the PA having low output power has a feasibility issue that an optimum impedance of PA is too high to match with antenna impedance. For this reason, obtaining the maximum efficiency of PA is difficult for conventional structure. Moreover, conventional PAs output bandwidth is to be narrow due to high impedance transform ratio between PAs output and antennas input impedances. The CRCC structure solves this issue by decreasing the impedance transform ratio. The transmitter with CRCC PA is designed and verified through the measurement.Chapter 1. Introduction 1 1.1. WBAN (Wireless Body Area Network) 1 1.2. Challenges in Designing Transceiver for Medical Implant Application 7 Chapter 2. Propagation Loss in Human Body 10 2.1. Introduction 10 2.2. Far field approximation in human-body 13 2.3. Calculation of propagation loss in human-body 15 2.3.1. Frisss formula 15 2.3.2. Efficiency of transmitting antenna in human-body 17 2.4. Calculation of propagation loss in human-body and conclusion 19 Chapter 3. A Design of Transceiver for Capsule Endoscopy Application 21 3.1. Introduction 21 3.2. System Link Budget Calculation 24 3.3. Implementation 26 3.3.1. Transmitter with class B amplifier 26 3.3.2. Super-heterodyne receiver with AGC 28 3.3.3. Measurement results 30 3.4. Image recovery experiment 35 3.4.1. Integration of capsule endoscopy 35 3.4.2. Image recovery in the liquid human phantom 38 3.4.3. Image recovery in a pigs stomach and large intestine 40 3.5. Conclusion 41 Chapter 4. Super-Regenerative Receiver with Digitally Self-Quenching Loop 42 4.1. Introduction 42 4.1.1. Selection of receivers architecture for implantable medical device 44 4.1.2. Previous study of super-regenerative receiver 50 4.2. Main idea of proposed super-regenerative receiver 51 4.3. Description of proposed receiver 53 4.3.1. Digital self-quenching loop 55 4.3.2. Low noise amplifier and super-regenerative oscillator 57 4.3.3. Active RC filter for low power consumption 59 4.4. Experimental results 63 4.5. Summary and conclusion 69 Chapter 5. A Transmitter with Current-Reused and Current-Combining PA 71 5.1. Introduction 71 5.1.1. Previous study of OOK transmitter 72 5.2. Main idea of proposed transmitter 73 5.3. Description of proposed transmitter 79 5.3.1. Current-combining and current-reused PA 79 5.3.2. Ring oscillator with driving buffer 83 5.4. Experimental Results 85 5.5. Summary and conclusion 93 Chapter 6. Conclusion 95 Chapter 7. Appendix 97 7.1. Output spectrum of OOK signal 97 7.2. Theoretical BER of OOK comunication 99 Bibliography 101 초 록 109Docto

    A review of recent innovations in remote health monitoring

    Get PDF
    The development of remote health monitoring systems has focused on enhancing healthcare services’ efficiency and quality, particularly in chronic disease management and elderly care. These systems employ a range of sensors and wearable devices to track patients’ health status and offer real-time feedback to healthcare providers. This facilitates prompt interventions and reduces hospitalization rates. The aim of this study is to explore the latest developments in the realm of remote health monitoring systems. In this paper, we explore a wide range of domains, spanning antenna designs, small implantable antennas, on-body wearable solutions, and adaptable detection and imaging systems. Our research also delves into the methodological approaches used in monitoring systems, including the analysis of channel characteristics, advancements in wireless capsule endoscopy, and insightful investigations into sensing and imaging techniques. These advancements hold the potential to improve the accuracy and efficiency of monitoring, ultimately contributing to enhanced health outcomes for patients.Publisher's VersionQ2WOS:001130630400001PMID:3813832

    UWB radio channel and diversity characterization for wireless implanted devices

    Full text link
    Las redes de área corporal permiten la interconexión de nodos independientes situados dentro o fuera de la superficie corporal o, incluso, alejados de dicha superficie. En cuanto a las comunicaciones intracorporales, el establecimiento de un enlace robusto con una cápsula endoscópica o con un marcapasos, son ejemplos de los avances tecnológicos conseguidos en las últimas décadas. A pesar de estos desarrollos en asistencia sanitaria, los estándares actuales para este tipo de comunicaciones no permiten conexiones inalámbricas de alta velocidad de transmisión, las cuales son comunes en los servicios actuales de telecomunicaciones. Los sistemas UWB han surgido como potencial candidato para las futuras redes de comunicaciones inalámbricas intracorporales. No obstante, el principal obstáculo de la tecnología UWB para aplicaciones intracorporales es la alta atenuación que sufren las señales transmitidas al atravesar los distintos tejidos corporales, que aumenta drásticamente con el aumento de la frecuencia. Por tanto, es importante una caracterización precisa del canal UWB intracorporal a la hora de validar dicha banda como la adecuada para este propósito.Esta tesis se centra en el análisis de la tecnología UWB para posibilitar comunicaciones intracorporales inalámbricas desde un punto de vista experimental. Para conseguir este objetivo, se ha empleado un novedoso sistema de medidas experimental basado en fantomas en diversos escenarios de propagación intracorporal. De esta forma, se pueden comprobar las pérdidas de propagación en el medio así como la diversidad del canal de una forma fiable. Con el fin de validar los valores obtenidos en el laboratorio, se han comparado y analizado con los obtenidos en un experimento in vivo. Por otro lado, se han diseñado y fabricado nuevas antenas UWB candidatas para comunicaciones intracorporales, empleando técnicas existentes y nuevas de miniaturización y optimización. Finalmente, se han usado técnicas basadas en diversidad para mejorar el rendimiento del canal de propagación en dos escenarios intracorporales diferentes.Wireless Body Area Networks allow the interconnection between independent nodes located either inside or over the body skin or further. Regarding in-body communications, establishing a proper link with a capsule endoscope or with a pacemaker are examples of technological advances achieved in the last decades. In spite of these healthcare developments, current standards for these kind of communications do not allow high data rate wireless connections, which are common in the current telecommunication services. UWB systems have emerged as a potential solution for future wireless in-body communications. Nevertheless, the main drawback of UWB for in-body applications is the high attenuation of human body tissues which increases dramatically with the increment of frequency. Hence, an accurate UWB in-body channel characterization is relevant in order validate UWB frequency band as the best candidate for future networks of implantable nodes. This thesis is devoted to test UWB technology for in-body communications from an experimental point of view. To achieve this goal, a novel spatial phantom-based measurement setup is used in several in-body propagation scenarios. Thus, the losses in the propagation medium and the channel diversity are checked in a reliable way. In order to check the values obtained in laboratory, they are compared and discussed with those obtained in an in vivo experiment. On the other hand, new UWB antenna candidates for inbody communications are designed and manufactured by using typical and new miniaturization and antenna optimization techniques for this purpose. Finally, diversity-based techniques are used to improve the performance of the propagation channel in two different in-body scenarios.Les xarxes d'àrea corporal permeten la interconnexió de nodes independents situats, o bé dins, o bé sobre la pell, o inclús allunyats del propi cos. Pel que fa a les comunicacions intracorporals, l'establiment d'un bon enllaç amb una càpsula endoscòpica o amb un marcapassos, són exemples dels avanços tecnològics aconseguits les darreres dècades. A pesar d'aquests desenvolupaments en assistència sanitària, els estàndards actuals per a aquests tipus de comunicacions no permeten connexions sense fil d'alta velocitat de transmissió, que són habituals als serveis actuals de telecomunicacions. Els sistemes UWB han sorgit com una solució potencial per a les futures comunicacions sense fill intracorporals. No obstant, el principal obstacle de la tecnologia UWB per a les aplicacions intracorporals és l'alta atenuació dels teixits del cos humà, que augmenta dràsticament amb l'increment de freqüència. Per tant, és important una caracterització acurada del canal UWB intracorporal a l'hora de validar la banda de freqüència UWB com a la millor candidata per a les futures xarxes de nodes implantats.Aquesta tesi se centra en l'anàlisi de la tecnologia UWB per a comunicacions intracorporals des d'un punt de vista experimental. Per a aconseguir aquest objectiu s'ha emprat un sistema novedós de mesures experimentals, basat en fantomes, en diversos escenaris de propagació intracorporal. D'aquesta manera es poden comprovar les pèrdues de propagació en el medi i la diversitat del canal d'una forma fiable. Per tal d'avaluar els valors obtinguts al laboratori, s'han comparat i analitzat amb aquells obtinguts en un experiment in vivo. Per altra banda, s'han dissenyat i fabricat noves antenes UWB candidates per a comunicacions intracorporals emprant tècniques típiques i noves de miniaturització i optimització d'antenes per a aquest propòsit. Finalment s'han usat tècniques basades en diversitat per a millorar el rendiment del canal de propagació en dos escenaris intracorporals diferents.Andreu Estellés, C. (2018). UWB radio channel and diversity characterization for wireless implanted devices [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111836TESI

    Initial UWB in-body channel characterization using a novel multilayer phantom measurement setup

    Full text link
    [EN] Wireless Body Area Networks (WBANs) are a promising technology for medical purposes. Currently the WBAN are classified into: implanted (in-), surface (on-) or outside (off-) body communications regarding the location of the devices with reference to the human body. The Ultra Wide-Band (UWB) frequency band is growing as a band of interest for implanted communications because of its high data rate and low power consumption among other benefits. Software simulations, in-vivo measurements and experimental phantom measurements are common methods to properly characterize the propagation channel. Nevertheless, up to now, experimental phantoms measurements presented in the literature show some inconveniences, i.e., the accuracy of the phantoms compared with the real human tissues or the testbed used for the measurements. This paper aims at overcoming these issues using accurate phantoms designed for the purpose of implanted communications in the UWB frequency band. In addition, a multilayer phantom container was developed. This container has capacity for two different phantoms, emulating a heterogeneous propagation medium for in-body measurements. Moreover, a novel setup was built for in-body phantom measurements. As a result, an experimental path loss model is presented from the measurements obtained with phantoms. Besides, software simulations mimicking the experimental setup are performed in order to validate the previous results obtainedThis work was supported by the European Union's H2020:MSCA:ITN program for the "Wireless In-body Environment Communication-WiBEC" project under the grant agreement no. 675353. this work was also funded by the Programa de Ayudas de Investigación y Desarrollo 8PAID-01-16) from Univeristat Politècnica de València and by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R), by the European FEDER funds.Pérez-Simbor, S.; Barbi, M.; Garcia-Pardo, C.; Castelló-Palacios, S.; Cardona Marcet, N. (2018). Initial UWB in-body channel characterization using a novel multilayer phantom measurement setup. IEEE. 384-389. https://doi.org/10.1109/WCNCW.2018.8369011S38438
    corecore