206 research outputs found

    Multi-Level Multi-Objective Programming and Optimization for Integrated Air Defense System Disruption

    Get PDF
    The U.S. military\u27s ability to project military force is being challenged. This research develops and demonstrates the application of three respective sensor location, relocation, and network intrusion models to provide the mathematical basis for the strategic engagement of emerging technologically advanced, highly-mobile, Integrated Air Defense Systems. First, we propose a bilevel mathematical programming model for locating a heterogeneous set of sensors to maximize the minimum exposure of an intruder\u27s penetration path through a defended region. Next, we formulate a multi-objective, bilevel optimization model to relocate surviving sensors to maximize an intruder\u27s minimal expected exposure to traverse a defended border region, minimize the maximum sensor relocation time, and minimize the total number of sensors requiring relocation. Lastly, we present a trilevel, attacker-defender-attacker formulation for the heterogeneous sensor network intrusion problem to optimally incapacitate a subset of the defender\u27s sensors and degrade a subset of the defender\u27s network to ultimately determine the attacker\u27s optimal penetration path through a defended network

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp

    A Centrality-Based Security Game for Multi-Hop Networks

    Get PDF
    We formulate a network security problem as a zero-sum game between an attacker who tries to disrupt a network by disabling one or more nodes, and the nodes of the network who must allocate limited resources in defense of the network. The utility of the zero-sum game can be one of several network performance metrics that correspond to node centrality measures. We first present a fast centralized algorithm that uses a monotone property of the utility function to compute saddle-point equilibrium strategies for the case of single-node attacks and single- or multiple-node defense. We then extend the approach to the distributed setting by computing the necessary quantities using a finite-time distributed averaging algorithm. For simultaneous attacks to multiple nodes the computational complexity becomes quite high, so we propose a method to approximate the saddle-point equilibrium strategies based on a sequential simplification, which performs well in simulations

    Optimal jammer placement to interdict wireless network services

    Get PDF
    The demand for wireless networks continues to grow as the need for portable, low-cost telecommunications systems increases around the world. Wireless networks are particularly complex because their topologies can change in response to operational requirements or environmental conditions and also because wireless networks are susceptible to electromagnetic interference. In this thesis, we consider the challenges associated with the operation and jamming of so-called "wireless mesh networks." In a wireless mesh network, the communication devices (denoted here as a nodes) are uniform in their ability to send and receive transmissions. We formulate and solve two related optimization problems for wireless mesh networks. First, we solve the problem of the network operator, namely: In order to maximize the utility of delivered network traffic, how should one set the power transmission levels for each node, and along what sequence of transmission links should the traffic flow? The second problem we consider involves an intelligent adversary, the attacker, who wants to place jamming devices among a finite number of locations to disrupt the operator's traffic in the worst possible way. We formulate and solve mathematical programs to obtain the optimal operation and jamming of these networks. We develop a computational decision-support tool that affords the rapid reconfiguration and analysis of various deployment scenarios.http://archive.org/details/optimaljammerpla109454012US Marine Corps (USMC) author

    COUNTER-UXS ENERGY AND OPERATIONAL ANALYSIS

    Get PDF
    At present, there exists a prioritization of identifying novel and innovative approaches to managing the small Unmanned Aircraft Systems (sUAS) threat. The near-future sUAS threat to U.S. forces and infrastructure indicates that current Counter-UAS (C-UAS) capabilities and tactics, techniques, and procedures (TTPs) need to evolve to pace the threat. An alternative approach utilizes a networked squadron of unmanned aerial vehicles (UAVs) designed for sUAS threat interdiction. This approach leverages high performance and Size, Weight, and Power (SWaP) conformance to create less expensive, but more capable, C-UAS devices to augment existing capabilities. This capstone report documents efforts to develop C-UAS technologies to reduce energy consumption and collaterally disruptive signal footprint while maintaining operational effectiveness. This project utilized Model Based System Engineering (MBSE) techniques to explore and assess these technologies within a mission context. A Concept of Operations was developed to provide the C-UAS Operational Concept. Operational analysis led to development of operational scenarios to define the System of Systems (SoS) concept, operating conditions, and required system capabilities. Resource architecture was developed to define the functional behaviors and system performance characteristics for C-UAS technologies. Lastly, a modeling and simulation (M&S) tool was developed to evaluate mission scenarios for C-UAS.Outstanding ThesisCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    REDESIGNING THE COUNTER UNMANNED SYSTEMS ARCHITECTURE

    Get PDF
    Includes supplementary material. Please contact [email protected] for access.When the Islamic State used Unmanned Aerial Vehicles (UAV) to target coalition forces in 2014, the use of UAVs rapidly expanded, giving weak states and non-state actors an asymmetric advantage over their technologically superior foes. This asymmetry led the Department of Defense (DOD) and the Department of Homeland Security (DHS) to spend vast sums of money on counter-unmanned aircraft systems (C-UAS). Despite the market density, many C-UAS technologies use expensive, bulky, and high-power-consuming electronic attack methods for ground-to-air interdiction. This thesis outlines the current technology used for C-UAS and proposes a defense-in-depth framework using airborne C-UAS patrols outfitted with cyber-attack capabilities. Using aerial interdiction, this thesis develops a novel C-UAS device called the Detachable Drone Hijacker—a low-size, weight, and power C-UAS device designed to deliver cyber-attacks against commercial UAVs using the IEEE 802.11 wireless communication specification. The experimentation results show that the Detachable Drone Hijacker, which weighs 400 grams, consumes one Watt of power, and costs $250, can interdict adversarial UAVs with no unintended collateral damage. This thesis recommends that the DOD and DHS incorporates aerial interdiction to support its C-UAS defense-in-depth, using technologies similar to the Detachable Drone Hijacker.DASN-OE, Washington DC, 20310Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Critical Infrastructure Protection Metrics and Tools Papers and Presentations

    Get PDF
    Contents: Dr. Hilda Blanco: Prioritizing Assets in Critical Infrastructure Systems; Christine Poptanich: Strategic Risk Analysis; Geoffrey S. French/Jin Kim: Threat-Based Approach to Risk Case Study: Strategic Homeland Infrastructure Risk Assessment (SHIRA); William L. McGill: Techniques for Adversary Threat Probability Assessment; Michael R. Powers: The Mathematics of Terrorism Risk Stefan Pickl: SOA Approach to the IT-based Protection of CIP; Richard John: Probabilistic Project Management for a Terrorist Planning a Dirty Bomb Attack on a Major US Port; LCDR Brady Downs: Maritime Security Risk Analysis Model (MSRAM); Chel Stromgren: Terrorism Risk Assessment and Management (TRAM); Steve Lieberman: Convergence of CIP and COOP in Banking and Finance; Harry Mayer: Assessing the Healthcare and Public Health Sector with Model Based Risk Analysis; Robert Powell: How Much and On What? Defending and Deterring Strategic Attackers; Ted G. Lewis: Why Do Networks Cascade
    • …
    corecore