323 research outputs found

    Security Analysis of Fan et al. Lightweight RFID Authentication Protocol for Privacy Protection in IoT

    Get PDF
    The designers of Radio-Frequency IDentification (RFID) systems have a challenging task for proposing secure mutual authentication protocols for Internet of Things (IoT) applications. Recently, Fan et al. proposed a new lightweight RFID mutual authentication protocol in the journal of IEEE Transactions on Industrial Informatics. They claimed that their protocol meets necessary security properties for RFID systems and can be applied for IoT. In this paper, we analyze the security of this protocol and show that it is vulnerable against secret disclosure, reader impersonation and tag traceability attacks. Additionally, we show that in their protocol the anonymity of the tag does not held

    Security Attacks and Enhancements to Chaotic Map-Based RFID Authentication Protocols

    Get PDF
    Radio frequency identification (RFID) technology has been increasingly integrated into numerous applications for authentication of objects or individuals. However, because of its limited computation power, RFID technology may cause several security and privacy issues such as tracking the owner of the tag, cloning of the tags and etc. Recently, two chaotic map-based authentication protocols have been proposed for low-cost RFID tags in order to eliminate these issues. In this paper, we give the security analysis of these protocols and uncover their weaknesses. We prove that these protocols are vulnerable to tag tracing, tag impersonation and desynchronization attacks. The attack complexity of an adversary is polynomial and the success probability of these attacks are substantial. Moreover, we also propose an improved RFID authentication protocol that employs Chebyshev chaotic maps and complies with the EPC global Class 1 Generation 2 standard. Finally, we show that our protocol is resistant against those security issues

    Protocol for a Systematic Literature Review on Security-related Research in Ubiquitous Computing

    Get PDF
    Context: This protocol is as a supplementary document to our review paper that investigates security-related challenges and solutions that have occurred during the past decade (from January 2003 to December 2013). Objectives: The objective of this systematic review is to identify security-related challenges, security goals and defenses in ubiquitous computing by answering to three main research questions. First, demographic data and trends will be given by analyzing where, when and by whom the research has been carried out. Second, we will identify security goals that occur in ubiquitous computing, along with attacks, vulnerabilities and threats that have motivated the research. Finally, we will examine the differences in addressing security in ubiquitous computing with those in traditional distributed systems. Method: In order to provide an overview of security-related challenges, goals and solutions proposed in the literature, we will use a systematic literature review (SLR). This protocol describes the steps which are to be taken in order to identify papers relevant to the objective of our review. The first phase of the method includes planning, in which we define the scope of our review by identifying the main research questions, search procedure, as well as inclusion and exclusion criteria. Data extracted from the relevant papers are to be used in the second phase of the method, data synthesis, to answer our research questions. The review will end by reporting on the results. Results and conclusions: The expected results of the review should provide an overview of attacks, vulnerabilities and threats that occur in ubiquitous computing and that have motivated the research in the last decade. Moreover, the review will indicate which security goals are gaining on their significance in the era of ubiquitous computing and provide a categorization of the security-related countermeasures, mechanisms and techniques found in the literature. (authors' abstract)Series: Working Papers on Information Systems, Information Business and Operation

    Security for networked smart healthcare systems: A systematic review

    Get PDF
    Background and Objectives Smart healthcare systems use technologies such as wearable devices, Internet of Medical Things and mobile internet technologies to dynamically access health information, connect patients to health professionals and health institutions, and to actively manage and respond intelligently to the medical ecosystem's needs. However, smart healthcare systems are affected by many challenges in their implementation and maintenance. Key among these are ensuring the security and privacy of patient health information. To address this challenge, several mitigation measures have been proposed and some have been implemented. Techniques that have been used include data encryption and biometric access. In addition, blockchain is an emerging security technology that is expected to address the security issues due to its distributed and decentralized architecture which is similar to that of smart healthcare systems. This study reviewed articles that identified security requirements and risks, proposed potential solutions, and explained the effectiveness of these solutions in addressing security problems in smart healthcare systems. Methods This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines and was framed using the Problem, Intervention, Comparator, and Outcome (PICO) approach to investigate and analyse the concepts of interest. However, the comparator is not applicable because this review focuses on the security measures available and in this case no comparable solutions were considered since the concept of smart healthcare systems is an emerging one and there are therefore, no existing security solutions that have been used before. The search strategy involved the identification of studies from several databases including the Cumulative Index of Nursing and Allied Health Literature (CINAL), Scopus, PubMed, Web of Science, Medline, Excerpta Medical database (EMBASE), Ebscohost and the Cochrane Library for articles that focused on the security for smart healthcare systems. The selection process involved removing duplicate studies, and excluding studies after reading the titles, abstracts, and full texts. Studies whose records could not be retrieved using a predefined selection criterion for inclusion and exclusion were excluded. The remaining articles were then screened for eligibility. A data extraction form was used to capture details of the screened studies after reading the full text. Of the searched databases, only three yielded results when the search strategy was applied, i.e., Scopus, Web of science and Medline, giving a total of 1742 articles. 436 duplicate studies were removed. Of the remaining articles, 801 were excluded after reading the title, after which 342 after were excluded after reading the abstract, leaving 163, of which 4 studies could not be retrieved. 159 articles were therefore screened for eligibility after reading the full text. Of these, 14 studies were included for detailed review using the formulated research questions and the PICO framework. Each of the 14 included articles presented a description of a smart healthcare system and identified the security requirements, risks and solutions to mitigate the risks. Each article also summarized the effectiveness of the proposed security solution. Results The key security requirements reported were data confidentiality, integrity and availability of data within the system, with authorisation and authentication used to support these key security requirements. The identified security risks include loss of data confidentiality due to eavesdropping in wireless communication mediums, authentication vulnerabilities in user devices and storage servers, data fabrication and message modification attacks during transmission as well as while the data is at rest in databases and other storage devices. The proposed mitigation measures included the use of biometric accessing devices; data encryption for protecting the confidentiality and integrity of data; blockchain technology to address confidentiality, integrity, and availability of data; network slicing techniques to provide isolation of patient health data in 5G mobile systems; and multi-factor authentication when accessing IoT devices, servers, and other components of the smart healthcare systems. The effectiveness of the proposed solutions was demonstrated through their ability to provide a high level of data security in smart healthcare systems. For example, proposed encryption algorithms demonstrated better energy efficiency, and improved operational speed; reduced computational overhead, better scalability, efficiency in data processing, and better ease of deployment. Conclusion This systematic review has shown that the use of blockchain technology, biometrics (fingerprints), data encryption techniques, multifactor authentication and network slicing in the case of 5G smart healthcare systems has the potential to alleviate possible security risks in smart healthcare systems. The benefits of these solutions include a high level of security and privacy for Electronic Health Records (EHRs) systems; improved speed of data transaction without the need for a decentralized third party, enabled by the use of blockchain. However, the proposed solutions do not address data protection in cases where an intruder has already accessed the system. This may be potential avenues for further research and inquiry

    An authentic-based privacy preservation protocol for smart e-healthcare systems in iot

    Get PDF
    © 2013 IEEE. Emerging technologies rapidly change the essential qualities of modern societies in terms of smart environments. To utilize the surrounding environment data, tiny sensing devices and smart gateways are highly involved. It has been used to collect and analyze the real-time data remotely in all Industrial Internet of Things (IIoT). Since the IIoT environment gathers and transmits the data over insecure public networks, a promising solution known as authentication and key agreement (AKA) is preferred to prevent illegal access. In the medical industry, the Internet of Medical Things (IoM) has become an expert application system. It is used to gather and analyze the physiological parameters of patients. To practically examine the medical sensor-nodes, which are imbedded in the patient\u27s body. It would in turn sense the patient medical information using smart portable devices. Since the patient information is so sensitive to reveal other than a medical professional, the security protection and privacy of medical data are becoming a challenging issue of the IoM. Thus, an anonymity-based user authentication protocol is preferred to resolve the privacy preservation issues in the IoM. In this paper, a Secure and Anonymous Biometric Based User Authentication Scheme (SAB-UAS) is proposed to ensure secure communication in healthcare applications. This paper also proves that an adversary cannot impersonate as a legitimate user to illegally access or revoke the smart handheld card. A formal analysis based on the random-oracle model and resource analysis is provided to show security and resource efficiencies in medical application systems. In addition, the proposed scheme takes a part of the performance analysis to show that it has high-security features to build smart healthcare application systems in the IoM. To this end, experimental analysis has been conducted for the analysis of network parameters using NS3 simulator. The collected results have shown superiority in terms of the packet delivery ratio, end-to-end delay, throughput rates, and routing overhead for the proposed SAB-UAS in comparison to other existing protocols

    Security and privacy issues of physical objects in the IoT: Challenges and opportunities

    Get PDF
    In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out

    A Secure Code-Based Authentication Scheme for RFID Systems

    Full text link
    corecore