19 research outputs found

    Vision-based human activity analysis

    Get PDF

    Interfaces avanzados aplicados a la interacciĂłn musical

    Get PDF
    The latest advances in human-computer interaction technologies have brought forth changes in the way we interact with computing devices of any kind, from the standard desktop computer to the more recent smartphones. The development of these technologies has thus introduced new interaction metaphors that provide more enriching experiences for a wide range of different applications. Music is one of most ancient forms of art and entertainment that can be found in our legacy, and conforms a strong interactive experience on itself. The application of new technologies to enhance music computer-based interaction paradigms can potentially provide all sorts of improvements: providing low-cost access to music rehearsal, lowering knowledge barriers in regard to music learning, virtual instrument simulation, etc. Yet, surprisingly, there has been rather limited research on the application of new interaction models and technologies to the specific field of music interaction in regard to other areas. This thesis aims to address the aforementioned need by presenting a set of studies which cover the use of innovative interaction models for music-based applications, from interaction paradigms for music learning to more entertainment-oriented interaction interfaces, such as virtual musical instruments, ensemble conductor simulation, etc. The main contributions of this thesis are: · It is shown that the use of signal processing techniques on the music signal and music information retrieval techniques can create enticing interfaces for music learning. Concretely, the research conducted includes the implementation and experimental evaluation of a set of different learning-oriented applications which make use of these techniques to implement inexpensive, easy-to-use human-computer interfaces, which serve as support tools in music learning processes. · This thesis explores the use of tracking systems and machine learning techniques to achieve more sophisticated interfaces for innovative music interaction paradigms. Concretely, the studies conducted have shown that it is indeed feasible to emulate the functionally of musical instruments such as the drumkit or the theremin. In a similar way, it is shown that more complex musical roles can also be recreated through the use of new interaction models, such as the case of the ensemble conductor or a step-aerobics application. · The benefits in using advanced human-computer interfaces in musical experiences are review and assessed through experimental evaluation. It is shown that the addition of these interfaces contributes positively to user perception, providing more satisfying and enriching experiences overall. · The thesis also illustrates that the use of machine learning algoriths and signal processing along with new interaction devices provides an effective framework for human gesture recognition and prediction, and even mood estimation

    Tracking hands in action for gesture-based computer input

    Get PDF
    This thesis introduces new methods for markerless tracking of the full articulated motion of hands and for informing the design of gesture-based computer input. Emerging devices such as smartwatches or virtual/augmented reality glasses are in need of new input devices for interaction on the move. The highly dexterous human hands could provide an always-on input capability without the actual need to carry a physical device. First, we present novel methods to address the hard computer vision-based hand tracking problem under varying number of cameras, viewpoints, and run-time requirements. Second, we contribute to the design of gesture-based interaction techniques by presenting heuristic and computational approaches. The contributions of this thesis allow users to effectively interact with computers through markerless tracking of hands and objects in desktop, mobile, and egocentric scenarios.Diese Arbeit stellt neue Methoden für die markerlose Verfolgung der vollen Artikulation der Hände und für die Informierung der Gestaltung der Gestik-Computer-Input. Emerging-Geräte wie Smartwatches oder virtuelle / Augmented-Reality-Brillen benötigen neue Eingabegeräte für Interaktion in Bewegung. Die sehr geschickten menschlichen Hände konnten eine immer-on-Input-Fähigkeit, ohne die tatsächliche Notwendigkeit, ein physisches Gerät zu tragen. Zunächst stellen wir neue Verfahren vor, um das visionbasierte Hand-Tracking-Problem des Hardcomputers unter variierender Anzahl von Kameras, Sichtweisen und Laufzeitanforderungen zu lösen. Zweitens tragen wir zur Gestaltung von gesture-basierten Interaktionstechniken bei, indem wir heuristische und rechnerische Ansätze vorstellen. Die Beiträge dieser Arbeit ermöglichen es Benutzern, effektiv interagieren mit Computern durch markerlose Verfolgung von Händen und Objekten in Desktop-, mobilen und egozentrischen Szenarien

    Mixture-Based Clustering and Hidden Markov Models for Energy Management and Human Activity Recognition: Novel Approaches and Explainable Applications

    Get PDF
    In recent times, the rapid growth of data in various fields of life has created an immense need for powerful tools to extract useful information from data. This has motivated researchers to explore and devise new ideas and methods in the field of machine learning. Mixture models have gained substantial attention due to their ability to handle high-dimensional data efficiently and effectively. However, when adopting mixture models in such spaces, four crucial issues must be addressed, including the selection of probability density functions, estimation of mixture parameters, automatic determination of the number of components, identification of features that best discriminate the different components, and taking into account the temporal information. The primary objective of this thesis is to propose a unified model that addresses these interrelated problems. Moreover, this thesis proposes a novel approach that incorporates explainability. This thesis presents innovative mixture-based modelling approaches tailored for diverse applications, such as household energy consumption characterization, energy demand management, fault detection and diagnosis and human activity recognition. The primary contributions of this thesis encompass the following aspects: Initially, we propose an unsupervised feature selection approach embedded within a finite bounded asymmetric generalized Gaussian mixture model. This model is adept at handling synthetic and real-life smart meter data, utilizing three distinct feature extraction methods. By employing the expectation-maximization algorithm in conjunction with the minimum message length criterion, we are able to concurrently estimate the model parameters, perform model selection, and execute feature selection. This unified optimization process facilitates the identification of household electricity consumption profiles along with the optimal subset of attributes defining each profile. Furthermore, we investigate the impact of household characteristics on electricity usage patterns to pinpoint households that are ideal candidates for demand reduction initiatives. Subsequently, we introduce a semi-supervised learning approach for the mixture of mixtures of bounded asymmetric generalized Gaussian and uniform distributions. The integration of the uniform distribution within the inner mixture bolsters the model's resilience to outliers. In the unsupervised learning approach, the minimum message length criterion is utilized to ascertain the optimal number of mixture components. The proposed models are validated through a range of applications, including chiller fault detection and diagnosis, occupancy estimation, and energy consumption characterization. Additionally, we incorporate explainability into our models and establish a moderate trade-off between prediction accuracy and interpretability. Finally, we devise four novel models for human activity recognition (HAR): bounded asymmetric generalized Gaussian mixture-based hidden Markov model with feature selection~(BAGGM-FSHMM), bounded asymmetric generalized Gaussian mixture-based hidden Markov model~(BAGGM-HMM), asymmetric generalized Gaussian mixture-based hidden Markov model with feature selection~(AGGM-FSHMM), and asymmetric generalized Gaussian mixture-based hidden Markov model~(AGGM-HMM). We develop an innovative method for simultaneous estimation of feature saliencies and model parameters in BAGGM-FSHMM and AGGM-FSHMM while integrating the bounded support asymmetric generalized Gaussian distribution~(BAGGD), the asymmetric generalized Gaussian distribution~(AGGD) in the BAGGM-HMM and AGGM-HMM respectively. The aforementioned proposed models are validated using video-based and sensor-based HAR applications, showcasing their superiority over several mixture-based hidden Markov models~(HMMs) across various performance metrics. We demonstrate that the independent incorporation of feature selection and bounded support distribution in a HAR system yields benefits; Simultaneously, combining both concepts results in the most effective model among the proposed models
    corecore