997 research outputs found

    Revisiting the capitalization of public transport accessibility into residential land value: an empirical analysis drawing on Open Science

    Get PDF
    Background: The delivery and effective operation of public transport is fundamental for a for a transition to low-carbon emission transport systems’. However, many cities face budgetary challenges in providing and operating this type of infrastructure. Land value capture (LVC) instruments, aimed at recovering all or part of the land value uplifts triggered by actions other than the landowner, can alleviate some of this pressure. A key element of LVC lies in the increment in land value associated with a particular public action. Urban economic theory supports this idea and considers accessibility to be a core element for determining residential land value. Although the empirical literature assessing the relationship between land value increments and public transport infrastructure is vast, it often assumes homogeneous benefits and, therefore, overlooks relevant elements of accessibility. Advancements in the accessibility concept in the context of Open Science can ease the relaxation of such assumptions. Methods: This thesis draws on the case of Greater Mexico City between 2009 and 2019. It focuses on the effects of the main public transport network (MPTN) which is organised in seven temporal stages according to its expansion phases. The analysis incorporates location based accessibility measures to employment opportunities in order to assess the benefits of public transport infrastructure. It does so by making extensive use of the open-source software OpenTripPlanner for public transport route modelling (≈ 2.1 billion origin-destination routes). Potential capitalizations are assessed according to the hedonic framework. The property value data includes individual administrative mortgage records collected by the Federal Mortgage Society (≈ 800,000). The hedonic function is estimated using a variety of approaches, i.e. linear models, nonlinear models, multilevel models, and spatial multilevel models. These are estimated by the maximum likelihood and Bayesian methods. The study also examines possible spatial aggregation bias using alternative spatial aggregation schemes according to the modifiable areal unit problem (MAUP) literature. Results: The accessibility models across the various temporal stages evidence the spatial heterogeneity shaped by the MPTN in combination with land use and the individual perception of residents. This highlights the need to transition from measures that focus on the characteristics of transport infrastructure to comprehensive accessibility measures which reflect such heterogeneity. The estimated hedonic function suggests a robust, positive, and significant relationship between MPTN accessibility and residential land value in all the modelling frameworks in the presence of a variety of controls. The residential land value increases between 3.6% and 5.7% for one additional standard deviation in MPTN accessibility to employment in the final set of models. The total willingness to pay (TWTP) is considerable, ranging from 0.7 to 1.5 times the equivalent of the capital costs of the bus rapid transit Line-7 of the Metrobús system. A sensitivity analysis shows that the hedonic model estimation is sensitive to the MAUP. In addition, the use of a post code zoning scheme produces the closest results compared to the smallest spatial analytical scheme (0.5 km hexagonal grid). Conclusion: The present thesis advances the discussion on the capitalization of public transport on residential land value by adopting recent contributions from the Open Science framework. Empirically, it fills a knowledge gap given the lack of literature around this topic in this area of study. In terms of policy, the findings support LVC as a mechanism of considerable potential. Regarding fee-based LVC instruments, there are fairness issues in relation to the distribution of charges or exactions to households that could be addressed using location based measures. Furthermore, the approach developed for this analysis serves as valuable guidance for identifying sites with large potential for the implementation of development based instruments, for instance land readjustments or the sale/lease of additional development rights

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Soundscape in Urban Forests

    Get PDF
    This Special Issue of Forests explores the role of soundscapes in urban forested areas. It is comprised of 11 papers involving soundscape studies conducted in urban forests from Asia and Africa. This collection contains six research fields: (1) the ecological patterns and processes of forest soundscapes; (2) the boundary effects and perceptual topology; (3) natural soundscapes and human health; (4) the experience of multi-sensory interactions; (5) environmental behavior and cognitive disposition; and (6) soundscape resource management in forests

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Offshore wind resource assessment based on scarce spatio-temporal measurements using matrix factorization

    Get PDF
    In the pre-construction of wind farms, wind resource assessment is of paramount importance. Measurements by lidars are a source of high-fidelity data. However, they are expensive and sparse in space and time. Contrarily, Weather Research and Forecasting models generate continuous data with relatively low fidelity. We propose a hybrid approach combining measurements and output from numerical simulations for the assessment of offshore wind. Firstly, the datasets were fed onto a matrix, with columns representing the spatial lidar and WRF points, and the rows representing the time steps. Entries of the matrix reflect the wind speed, empty entries represent unobserved data. Then, matrix factorization using Gaussian process was employed for filling the missing entries with statistically calculated estimates. The model was optimized with stochastic gradient descent to apply GP without approximation methods. To evaluate the method, wind speed data along the coast of Denmark were used. The proposed technique, evaluated using two experiments, resulted in 58% more accurate results than the industrial standard method with trivial increase of computational cost. The RMSE of the proposed method ranges between 0.35 and 0.52 m/s

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    Application of machine learning and deep neural networks for spatial prediction of groundwater nitrate concentration to improve land use management practices

    Get PDF
    The prediction of groundwater nitrate concentration\u27s response to geo-environmental and human-influenced factors is essential to better restore groundwater quality and improve land use management practices. In this paper, we regionalize groundwater nitrate concentration using different machine learning methods (Random forest (RF), unimodal 2D and 3D convolutional neural networks (CNN), and multi-stream early and late fusion 2D-CNNs) so that the nitrate situation in unobserved areas can be predicted. CNNs take into account not only the nitrate values of the grid cells of the observation wells but also the values around them. This has the added benefit of allowing them to learn directly about the influence of the surroundings. The predictive performance of the models was tested on a dataset from a pilot region in Germany, and the results show that, in general, all the machine learning models, after a Bayesian optimization hyperparameter search and training, achieve good spatial predictive performance compared to previous studies based on Kriging and numerical models. Based on the mean absolute error (MAE), the random forest model and the 2DCNN late fusion model performed best with an MAE (STD) of 9.55 (0.367) mg/l, R2 = 0.43 and 10.32 (0.27) mg/l, R2 = 0.27, respectively. The 3DCNN with an MAE (STD) of 11.66 (0.21) mg/l and largest resources consumption is the worst performing model. Feature importance learning from the models was used in conjunction with partial dependency analysis of the most important features to gain greater insight into the major factors explaining the nitrate spatial variability. Large uncertainties in nitrate prediction have been shown in previous studies. Therefore, the models were extended to quantify uncertainty using prediction intervals (PIs) derived from bootstrapping. Knowledge of uncertainty helps the water manager reduce risk and plan more reliably
    corecore