3,152 research outputs found

    Vote and aggregation in combinatorial domains with structured preferences

    Get PDF
    In many real-world collective decision problems, the set of alternatives is a Cartesian product of finite value domains for each of a given set of variables. The prohibitive size of such combinatorial domains makes it practically impossible to represent preference relations explicitly. Now, the AI community has been developing languages for representing preferences on such domains in a succinct way, exploiting structural properties such as conditional preferential independence. In this paper we reconsider voting and aggregation rules in the case where voters' preferences have a common preferential independence structure, and address the issue of decomposing a voting rule or an aggregation function following a linear order over variables

    Aggregating Dependency Graphs into Voting Agendas in Multi-Issue Elections

    Get PDF
    Many collective decision making problems have a combinatorial structure: the agents involved must decide on multiple issues and their preferences over one issue may depend on the choices adopted for some of the others. Voting is an attractive method for making collective decisions, but conducting a multi-issue election is challenging. On the one hand, requiring agents to vote by expressing their preferences over all combinations of issues is computationally infeasible; on the other, decomposing the problem into several elections on smaller sets of issues can lead to paradoxical outcomes. Any pragmatic method for running a multi-issue election will have to balance these two concerns. We identify and analyse the problem of generating an agenda for a given election, specifying which issues to vote on together in local elections and in which order to schedule those local elections

    An Efficient Protocol for Negotiation over Combinatorial Domains with Incomplete Information

    Full text link
    We study the problem of agent-based negotiation in combinatorial domains. It is difficult to reach optimal agreements in bilateral or multi-lateral negotiations when the agents' preferences for the possible alternatives are not common knowledge. Self-interested agents often end up negotiating inefficient agreements in such situations. In this paper, we present a protocol for negotiation in combinatorial domains which can lead rational agents to reach optimal agreements under incomplete information setting. Our proposed protocol enables the negotiating agents to identify efficient solutions using distributed search that visits only a small subspace of the whole outcome space. Moreover, the proposed protocol is sufficiently general that it is applicable to most preference representation models in combinatorial domains. We also present results of experiments that demonstrate the feasibility and computational efficiency of our approach
    • …
    corecore