20 research outputs found

    NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features

    Get PDF
    Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1) thyroid hormone like (NR1), (2) HNF4-like (NR2), (3) estrogen like, (4) nerve growth factor IB-like (NR4), (5) fushi tarazu-F1 like (NR5), (6) germ cell nuclear factor like (NR6), and (7) knirps like (NR0). The identification was made by the Fuzzy K nearest neighbor (FK-NN) classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will usually be. All the program codes for NR-2L are available for non-commercial purpose upon request

    Machine learning methods for omics data integration

    Get PDF
    High-throughput technologies produce genome-scale transcriptomic and metabolomic (omics) datasets that allow for the system-level studies of complex biological processes. The limitation lies in the small number of samples versus the larger number of features represented in these datasets. Machine learning methods can help integrate these large-scale omics datasets and identify key features from each dataset. A novel class dependent feature selection method integrates the F statistic, maximum relevance binary particle swarm optimization (MRBPSO), and class dependent multi-category classification (CDMC) system. A set of highly differentially expressed genes are pre-selected using the F statistic as a filter for each dataset. MRBPSO and CDMC function as a wrapper to select desirable feature subsets for each class and classify the samples using those chosen class-dependent feature subsets. The results indicate that the class-dependent approaches can effectively identify unique biomarkers for each cancer type and improve classification accuracy compared to class independent feature selection methods. The integration of transcriptomics and metabolomics data is based on a classification framework. Compared to principal component analysis and non-negative matrix factorization based integration approaches, our proposed method achieves 20-30% higher prediction accuracies on Arabidopsis tissue development data. Metabolite-predictive genes and gene-predictive metabolites are selected from transcriptomic and metabolomic data respectively. The constructed gene-metabolite correlation network can infer the functions of unknown genes and metabolites. Tissue-specific genes and metabolites are identified by the class-dependent feature selection method. Evidence from subcellular locations, gene ontology, and biochemical pathways support the involvement of these entities in different developmental stages and tissues in Arabidopsis

    In silico analysis of mitochondrial proteins

    Get PDF
    Le rôle important joué par la mitochondrie dans la cellule eucaryote est admis depuis longtemps. Cependant, la composition exacte des mitochondries, ainsi que les processus biologiques qui sy déroulent restent encore largement inconnus. Deux facteurs principaux permettent dexpliquer pourquoi létude des mitochondries progresse si lentement : le manque defficacité des méthodes didentification des protéines mitochondriales et le manque de précision dans lannotation de ces protéines. En conséquence, nous avons développé un nouvel outil informatique, YimLoc, qui permet de prédire avec succès les protéines mitochondriales à partir des séquences génomiques. Cet outil intègre plusieurs indicateurs existants, et sa performance est supérieure à celle des indicateurs considérés individuellement. Nous avons analysé environ 60 génomes fongiques avec YimLoc afin de lever la controverse concernant la localisation de la bêta-oxydation dans ces organismes. Contrairement à ce qui était généralement admis, nos résultats montrent que la plupart des groupes de Fungi possèdent une bêta-oxydation mitochondriale. Ce travail met également en évidence la diversité des processus de bêta-oxydation chez les champignons, en corrélation avec leur utilisation des acides gras comme source dénergie et de carbone. De plus, nous avons étudié le composant clef de la voie de bêta-oxydation mitochondriale, lacyl-CoA déshydrogénase (ACAD), dans 250 espèces, couvrant les 3 domaines de la vie, en combinant la prédiction de la localisation subcellulaire avec la classification en sous-familles et linférence phylogénétique. Notre étude suggère que les gènes ACAD font partie dune ancienne famille qui a adopté des stratégies évolutionnaires innovatrices afin de générer un large ensemble denzymes susceptibles dutiliser la plupart des acides gras et des acides aminés. Finalement, afin de permettre la prédiction de protéines mitochondriales à partir de données autres que les séquences génomiques, nous avons développé le logiciel TESTLoc qui utilise comme données des Expressed Sequence Tags (ESTs). La performance de TESTLoc est significativement supérieure à celle de tout autre outil de prédiction connu. En plus de fournir deux nouveaux outils de prédiction de la localisation subcellulaire utilisant différents types de données, nos travaux démontrent comment lassociation de la prédiction de la localisation subcellulaire à dautres méthodes danalyse in silico permet daméliorer la connaissance des protéines mitochondriales. De plus, ces travaux proposent des hypothèses claires et faciles à vérifier par des expériences, ce qui présente un grand potentiel pour faire progresser nos connaissances des métabolismes mitochondriaux.The important role of mitochondria in the eukaryotic cell has long been appreciated, but their exact composition and the biological processes taking place in mitochondria are not yet fully understood. The two main factors that slow down the progress in this field are inefficient recognition and imprecise annotation of mitochondrial proteins. Therefore, we developed a new computational tool, YimLoc, which effectively predicts mitochondrial proteins from genomic sequences. This tool integrates the strengths of existing predictors and yields higher performance than any individual predictor. We applied YimLoc to ~60 fungal genomes in order to address the controversy about the localization of beta oxidation in these organisms. Our results show that in contrast to previous studies, most fungal groups do possess mitochondrial beta oxidation. This work also revealed the diversity of beta oxidation in fungi, which correlates with their utilization of fatty acids as energy and carbon sources. Further, we conducted an investigation of the key component of the mitochondrial beta oxidation pathway, the acyl-CoA dehydrogenase (ACAD). We combined subcellular localization prediction with subfamily classification and phylogenetic inference of ACAD enzymes from 250 species covering all three domains of life. Our study suggests that ACAD genes are an ancient family with innovative evolutionary strategies to generate a large enzyme toolset for utilizing most diverse fatty acids and amino acids. Finally, to enable the prediction of mitochondrial proteins from data beyond genome sequences, we designed the tool TESTLoc that uses expressed sequence tags (ESTs) as input. TESTLoc performs significantly better than known tools. In addition to providing two new tools for subcellular localization designed for different data, our studies demonstrate the power of combining subcellular localization prediction with other in silico analyses to gain insights into the function of mitochondrial proteins. Most importantly, this work proposes clear hypotheses that are easily testable, with great potential for advancing our knowledge of mitochondrial metabolism

    CLASSIFIERS BASED ON A NEW APPROACH TO ESTIMATE THE FISHER SUBSPACE AND THEIR APPLICATIONS

    Get PDF
    In this thesis we propose a novel classifier, and its extensions, based on a novel estimation of the Fisher Subspace. The proposed classifiers have been developed to deal with high dimensional and highly unbalanced datasets whose cardinality is low. The efficacy of the proposed techniques has been proved by the results achieved on real and synthetic datasets, and by the comparison with state of the art predictors

    Profiling patterns of interhelical associations in membrane proteins.

    Get PDF
    A novel set of methods has been developed to characterize polytopic membrane proteins at the topological, organellar and functional level, in order to reduce the existing functional gap in the membrane proteome. Firstly, a novel clustering tool was implemented, named PROCLASS, to facilitate the manual curation of large sets of proteins, in readiness for feature extraction. TMLOOP and TMLOOP writer were implemented to refine current topological models by predicting membrane dipping loops. TMLOOP applies weighted predictive rules in a collective motif method, to overcome the inherent limitations of single motif methods. The approach achieved 92.4% accuracy in sensitivity and 100% reliability in specificity and 1,392 topological models described in the Swiss-Prot database were refined. The subcellular location (TMLOCATE) and molecular function (TMFUN) prediction methods rely on the TMDEPTH feature extraction method along data mining techniques. TMDEPTH uses refined topological models and amino acid sequences to calculate pairs of residues located at a similar depth in the membrane. Evaluation of TMLOCATE showed a normalized accuracy of 75% in discriminating between proteins belonging to the main organelles. At a sequence similarity threshold of 40%, TMFLTN predicted main functional classes with a sensitivity of 64.1-71.4%) and 70% of the olfactory GPCRs were correctly predicted. At a sequence similarity threshold of 90%, main functional classes were predicted with a sensitivity of 75.6-92.8%) and class A GPCRs were sub-classified with a sensitivity of 84.5%>-92.9%. These results reflect a direct association between the spatial arrangement of residues in the transmembrane regions and the capacity for polytopic membrane proteins to carry out their functions. The developed methods have for the first time categorically shown that the transmembrane regions hold essential information associated with a wide range of functional properties such as filtering and gating processes, subcellular location and molecular function

    Machine learning applications for the topology prediction of transmembrane beta-barrel proteins

    Get PDF
    The research topic for this PhD thesis focuses on the topology prediction of beta-barrel transmembrane proteins. Transmembrane proteins adopt various conformations that are about the functions that they provide. The two most predominant classes are alpha-helix bundles and beta-barrel transmembrane proteins. Alpha-helix proteins are present in larger numbers than beta-barrel transmembrane proteins in structure databases. Therefore, there is a need to find computational tools that can predict and detect the structure of beta-barrel transmembrane proteins. Transmembrane proteins are used for active transport across the membrane or signal transduction. Knowing the importance of their roles, it becomes essential to understand the structures of the proteins. Transmembrane proteins are also a significant focus for new drug discovery. Transmembrane beta-barrel proteins play critical roles in the translocation machinery, pore formation, membrane anchoring, and ion exchange. In bioinformatics, many years of research have been spent on the topology prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-barrel) proteins topology prediction have been overshadowed, and the prediction accuracy could be improved with further research. Various methodologies have been developed in the past to predict TMB proteins topology. Methods developed in the literature that are available include turn identification, hydrophobicity profiles, rule-based prediction, HMM (Hidden Markov model), ANN (Artificial Neural Networks), radial basis function networks, or combinations of methods. The use of cascading classifier has never been fully explored. This research presents and evaluates approaches such as ANN (Artificial Neural Networks), KNN (K-Nearest Neighbors, SVM (Support Vector Machines), and a novel approach to TMB topology prediction with the use of a cascading classifier. Computer simulations have been implemented in MATLAB, and the results have been evaluated. Data were collected from various datasets and pre-processed for each machine learning technique. A deep neural network was built with an input layer, hidden layers, and an output. Optimisation of the cascading classifier was mainly obtained by optimising each machine learning algorithm used and by starting using the parameters that gave the best results for each machine learning algorithm. The cascading classifier results show that the proposed methodology predicts transmembrane beta-barrel proteins topologies with high accuracy for randomly selected proteins. Using the cascading classifier approach, the best overall accuracy is 76.3%, with a precision of 0.831 and recall or probability of detection of 0.799 for TMB topology prediction. The accuracy of 76.3% is achieved using a two-layers cascading classifier. By constructing and using various machine-learning frameworks, systems were developed to analyse the TMB topologies with significant robustness. We have presented several experimental findings that may be useful for future research. Using the cascading classifier, we used a novel approach for the topology prediction of TMB proteins
    corecore