365 research outputs found

    Delaunay Hodge Star

    Full text link
    We define signed dual volumes at all dimensions for circumcentric dual meshes. We show that for pairwise Delaunay triangulations with mild boundary assumptions these signed dual volumes are positive. This allows the use of such Delaunay meshes for Discrete Exterior Calculus (DEC) because the discrete Hodge star operator can now be correctly defined for such meshes. This operator is crucial for DEC and is a diagonal matrix with the ratio of primal and dual volumes along the diagonal. A correct definition requires that all entries be positive. DEC is a framework for numerically solving differential equations on meshes and for geometry processing tasks and has had considerable impact in computer graphics and scientific computing. Our result allows the use of DEC with a much larger class of meshes than was previously considered possible.Comment: Corrected error in Figure 1 (columns 3 and 4) and Figure 6 and a formula error in Section 2. All mathematical statements (theorems and lemmas) are unchanged. The previous arXiv version v3 (minus the Appendix) appeared in the journal Computer-Aided Desig

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Reconstruction of freeform surfaces for metrology

    Get PDF
    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks® or Geomagic®). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces.EMR

    JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    Full text link
    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape. Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.Comment: Final revisions, as per: Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117-2140, https://doi.org/10.5194/gmd-10-2117-2017, 201

    Conforming restricted Delaunay mesh generation for piecewise smooth complexes

    Get PDF
    A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted Delaunay framework, this new algorithm combines a number of novel features, including: (i) an unweighted, conforming restricted Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve segments, (ii) a protection strategy for domains containing curve segments that subtend sharply acute angles, and (iii) a new class of off-centre refinement rules designed to achieve high-quality point-placement along embedded curve features. Experimental comparisons show that the new Frontal-Delaunay algorithm outperforms a classical (statically weighted) restricted Delaunay-refinement technique for a number of three-dimensional benchmark problems.Comment: To appear at the 25th International Meshing Roundtabl

    A Fast Algorithm for Well-Spaced Points and Approximate Delaunay Graphs

    Get PDF
    We present a new algorithm that produces a well-spaced superset of points conforming to a given input set in any dimension with guaranteed optimal output size. We also provide an approximate Delaunay graph on the output points. Our algorithm runs in expected time O(2O(d)(nlogn+m))O(2^{O(d)}(n\log n + m)), where nn is the input size, mm is the output point set size, and dd is the ambient dimension. The constants only depend on the desired element quality bounds. To gain this new efficiency, the algorithm approximately maintains the Voronoi diagram of the current set of points by storing a superset of the Delaunay neighbors of each point. By retaining quality of the Voronoi diagram and avoiding the storage of the full Voronoi diagram, a simple exponential dependence on dd is obtained in the running time. Thus, if one only wants the approximate neighbors structure of a refined Delaunay mesh conforming to a set of input points, the algorithm will return a size 2O(d)m2^{O(d)}m graph in 2O(d)(nlogn+m)2^{O(d)}(n\log n + m) expected time. If mm is superlinear in nn, then we can produce a hierarchically well-spaced superset of size 2O(d)n2^{O(d)}n in 2O(d)nlogn2^{O(d)}n\log n expected time.Comment: Full versio
    corecore