1,960 research outputs found

    Advantage in the discrete Voronoi game

    Get PDF
    We study the discrete Voronoi game, where two players alternately claim vertices of a graph for t rounds. In the end, the remaining vertices are divided such that each player receives the vertices that are closer to his or her claimed vertices. We prove that there are graphs for which the second player gets almost all vertices in this game, but this is not possible for bounded-degree graphs. For trees, the first player can get at least one quarter of the vertices, and we give examples where she can get only little more than one third of them. We make some general observations, relating the result with many rounds to the result for the one-round game on the same graph

    Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer

    Get PDF
    The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the “tragedy of the commons,” which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    The one-round Voronoi game replayed

    Get PDF
    We consider the one-round Voronoi game, where player one (``White'', called ``Wilma'') places a set of n points in a rectangular area of aspect ratio r <=1, followed by the second player (``Black'', called ``Barney''), who places the same number of points. Each player wins the fraction of the board closest to one of his points, and the goal is to win more than half of the total area. This problem has been studied by Cheong et al., who showed that for large enough nn and r=1, Barney has a strategy that guarantees a fraction of 1/2+a, for some small fixed a. We resolve a number of open problems raised by that paper. In particular, we give a precise characterization of the outcome of the game for optimal play: We show that Barney has a winning strategy for n>2 and r>sqrt{2}/n, and for n=2 and r>sqrt{3}/2. Wilma wins in all remaining cases, i.e., for n>=3 and r<=sqrt{2}/n, for n=2 and r<=sqrt{3}/2, and for n=1. We also discuss complexity aspects of the game on more general boards, by proving that for a polygon with holes, it is NP-hard to maximize the area Barney can win against a given set of points by Wilma.Comment: 14 pages, 6 figures, Latex; revised for journal version, to appear in Computational Geometry: Theory and Applications. Extended abstract version appeared in Workshop on Algorithms and Data Structures, Springer Lecture Notes in Computer Science, vol.2748, 2003, pp. 150-16
    • 

    corecore