138 research outputs found

    Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal Abstractions

    Full text link
    Controllers for dynamical systems that operate in safety-critical settings must account for stochastic disturbances. Such disturbances are often modeled as process noise in a dynamical system, and common assumptions are that the underlying distributions are known and/or Gaussian. In practice, however, these assumptions may be unrealistic and can lead to poor approximations of the true noise distribution. We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions. In particular, we address the problem of computing a controller that provides probabilistic guarantees on safely reaching a target, while also avoiding unsafe regions of the state space. First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states. As a key contribution, we adapt tools from the scenario approach to compute probably approximately correct (PAC) bounds on these transition probabilities, based on a finite number of samples of the noise. We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP is, with a user-specified confidence probability, robust against uncertainty in the transition probabilities, and the tightness of the probability intervals can be controlled through the number of samples. We use state-of-the-art verification techniques to provide guarantees on the iMDP and compute a controller for which these guarantees carry over to the original control system. In addition, we develop a tailored computational scheme that reduces the complexity of the synthesis of these guarantees on the iMDP. Benchmarks on realistic control systems show the practical applicability of our method, even when the iMDP has hundreds of millions of transitions.Comment: To appear in the Journal of Artificial Intelligence Research (JAIR). arXiv admin note: text overlap with arXiv:2110.1266

    Verification of Stochastic Reach-Avoid Using RKHS Embeddings

    Get PDF
    A solution to the terminal-hitting and first-hitting stochastic reach-avoid problem for a Markov control process is presented. This solution takes advantage of a nonparametric representation of the stochastic kernel as a conditional distribution embedding within a reproducing kernel Hilbert space (RKHS). Because the disturbance is modeled as a data-driven stochastic process, this representation avoids intractable integrals in the dynamic recursion of the reach-avoid problem since the expectations can be calculated as an inner product within the RKHS. An example using a high-dimensional chain of integrators is presented, as well as for Clohessy-Wiltshire-Hill (CWH) dynamics

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    Get PDF
    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.United States. Office of Naval Research (Grant N00014-09-1-0676 (Science of Autonomy - A-MISSION))United States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))Natural Sciences and Engineering Research Council of Canada (Postgraduate Fellowship

    Multi-Robot Persistent Coverage in Complex Environments

    Get PDF
    Los recientes avances en robótica móvil y un creciente desarrollo de robots móviles asequibles han impulsado numerosas investigaciones en sistemas multi-robot. La complejidad de estos sistemas reside en el diseño de estrategias de comunicación, coordinación y controlpara llevar a cabo tareas complejas que un único robot no puede realizar. Una tarea particularmente interesante es la cobertura persistente, que pretende mantener cubierto en el tiempo un entorno con un equipo de robots moviles. Este problema tiene muchas aplicaciones como aspiración o limpieza de lugares en los que la suciedad se acumula constantemente, corte de césped o monitorización ambiental. Además, la aparición de vehículos aéreos no tripulados amplía estas aplicaciones con otras como la vigilancia o el rescate.Esta tesis se centra en el problema de cubrir persistentemente entornos progresivamente mas complejos. En primer lugar, proponemos una solución óptima para un entorno convexo con un sistema centralizado, utilizando programación dinámica en un horizonte temporalnito. Posteriormente nos centramos en soluciones distribuidas, que son más robustas, escalables y eficientes. Para solventar la falta de información global, presentamos un algoritmo de estimación distribuido con comunicaciones reducidas. Éste permite a los robots teneruna estimación precisa de la cobertura incluso cuando no intercambian información con todos los miembros del equipo. Usando esta estimación, proponemos dos soluciones diferentes basadas en objetivos de cobertura, que son los puntos del entorno en los que más se puedemejorar dicha cobertura. El primer método es un controlador del movimiento que combina un término de gradiente con un término que dirige a los robots hacia sus objetivos. Este método funciona bien en entornos convexos. Para entornos con algunos obstáculos, el segundométodo planifica trayectorias abiertas hasta los objetivos, que son óptimas en términos de cobertura. Finalmente, para entornos complejos no convexos, presentamos un algoritmo capaz de encontrar particiones equitativas para los robots. En dichas regiones, cada robotplanifica trayectorias de longitud finita a través de un grafo de caminos de tipo barrido.La parte final de la tesis se centra en entornos discretos, en los que únicamente un conjunto finito de puntos debe que ser cubierto. Proponemos una estrategia que reduce la complejidad del problema separándolo en tres subproblemas: planificación de trayectoriascerradas, cálculo de tiempos y acciones de cobertura y generación de un plan de equipo sin colisiones. Estos subproblemas más pequeños se resuelven de manera óptima. Esta solución se utiliza en último lugar para una novedosa aplicación como es el calentamiento por inducción doméstico con inductores móviles. En concreto, la adaptamos a las particularidades de una cocina de inducción y mostramos su buen funcionamiento en un prototipo real.Recent advances in mobile robotics and an increasing development of aordable autonomous mobile robots have motivated an extensive research in multi-robot systems. The complexity of these systems resides in the design of communication, coordination and control strategies to perform complex tasks that a single robot can not. A particularly interesting task is that of persistent coverage, that aims to maintain covered over time a given environment with a team of robotic agents. This problem is of interest in many applications such as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environmental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs) has encouraged the application of the coverage problem to surveillance and monitoring. This thesis focuses on the problem of persistently covering a continuous environment in increasingly more dicult settings. At rst, we propose a receding-horizon optimal solution for a centralized system in a convex environment using dynamic programming. Then we look for distributed solutions, which are more robust, scalable and ecient. To deal with the lack of global information, we present a communication-eective distributed estimation algorithm that allows the robots to have an accurate estimate of the coverage of the environment even when they can not exchange information with all the members of the team. Using this estimation, we propose two dierent solutions based on coverage goals, which are the points of the environment in which the coverage can be improved the most. The rst method is a motion controller, that combines a gradient term with a term that drives the robots to the goals, and which performs well in convex environments. For environments with some obstacles, the second method plans open paths to the goals that are optimal in terms of coverage. Finally, for complex, non-convex environments we propose a distributed algorithm to nd equitable partitions for the robots, i.e., with an amount of work proportional to their capabilities. To cover this region, each robot plans optimal, nite-horizon paths through a graph of sweep-like paths. The nal part of the thesis is devoted to discrete environment, in which only a nite set of points has to be covered. We propose a divide-and-conquer strategy to separate the problem to reduce its complexity into three smaller subproblem, which can be optimally solved. We rst plan closed paths through the points, then calculate the optimal coverage times and actions to periodically satisfy the coverage required by the points, and nally join together the individual plans of the robots into a collision-free team plan that minimizes simultaneous motions. This solution is eventually used for a novel application that is domestic induction heating with mobile inductors. We adapt it to the particular setting of a domestic hob and demonstrate that it performs really well in a real prototype.<br /

    A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat Dynamics

    Get PDF
    Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints. An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*). The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using Bézier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional. Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation. Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant.Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche Suchräume, deren vollständige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, für die nur selten eine geschlossene mathematische Beschreibung existiert. Bei der in dieser Arbeit betrachteten Anwendung auf Flächenflugzeuge kommen differentielle Randbedingungen und beschränkte Systemgrößen erschwerend hinzu. Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die Suchraumkomplexität durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfüllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels Bézier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral überprüft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lässt. Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstützen. Hierzu wird die aktuelle Zwischenlösung des Planers als Initialschätzung für ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme. Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusätzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird. Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen Berücksichtigung von Hindernissen erweitert. Experimentelle Untersuchungen bestätigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung überlegen sind. Der erforderliche Rechenaufwand ist zwar beträchtlich, aber unter realistischen Bedingungen praktisch beherrschbar

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle
    corecore