180 research outputs found

    Progress Report : 1991 - 1994

    Get PDF

    An Invitation to Generalized Minkowski Geometry

    Get PDF
    The present thesis contributes to the theory of generalized Minkowski spaces as a continuation of Minkowski geometry, i.e., the geometry of finite-dimensional normed spaces over the field of real numbers. In a generalized Minkowski space, distance and length measurement is provided by a gauge, whose definition mimics the definition of a norm but lacks the symmetry requirement. This seemingly minor change in the definition is deliberately chosen. On the one hand, many techniques from Minkowski spaces can be adapted to generalized Minkowski spaces because several phenomena in Minkowski geometry simply do not depend on the symmetry of distance measurement. On the other hand, the possible asymmetry of the distance measurement set up by gauges is nonetheless meaningful and interesting for applications, e.g., in location science. In this spirit, the presentation of this thesis is led mainly by minimization problems from convex optimization and location science which are appealing to convex geometers, too. In addition, we study metrically defined objects, which may receive a new interpretation when we measure distances asymmetrically. To this end, we use a combination of methods from convex analysis and convex geometry to relate the properties of these objects to the shape of the unit ball of the generalized Minkowski space under consideration

    Computational Geometric and Algebraic Topology

    Get PDF
    Computational topology is a young, emerging field of mathematics that seeks out practical algorithmic methods for solving complex and fundamental problems in geometry and topology. It draws on a wide variety of techniques from across pure mathematics (including topology, differential geometry, combinatorics, algebra, and discrete geometry), as well as applied mathematics and theoretical computer science. In turn, solutions to these problems have a wide-ranging impact: already they have enabled significant progress in the core area of geometric topology, introduced new methods in applied mathematics, and yielded new insights into the role that topology has to play in fundamental problems surrounding computational complexity. At least three significant branches have emerged in computational topology: algorithmic 3-manifold and knot theory, persistent homology and surfaces and graph embeddings. These branches have emerged largely independently. However, it is clear that they have much to offer each other. The goal of this workshop was to be the first significant step to bring these three areas together, to share ideas in depth, and to pool our expertise in approaching some of the major open problems in the field
    corecore