42 research outputs found

    Fréchet Distance for Uncertain Curves

    Get PDF
    In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NP-hard for the Fréchet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (discrete [5] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, we show that computing the expected (discrete and continuous) Fréchet distance is #P-hard in some models.On the positive side, we present an FPTAS in constant dimension for the lower bound problem when Δ/δis polynomially bounded, where δis the Fréchet distance and Δbounds the diameter of the regions. We also show a near-linear-time 3-approximation for the decision problem on roughly δ-separated convex regions. Finally, we study the setting with Sakoe-Chiba time bands, where we restrict the alignment between the curves, and give polynomial-time algorithms for the upper bound and expected discrete and continuous Fréchet distance for uncertainty modelled as point sets.</p

    Realizability of Free Spaces of Curves

    Full text link
    The free space diagram is a popular tool to compute the well-known Fr\'echet distance. As the Fr\'echet distance is used in many different fields, many variants have been established to cover the specific needs of these applications. Often, the question arises whether a certain pattern in the free space diagram is "realizable", i.e., whether there exists a pair of polygonal chains whose free space diagram corresponds to it. The answer to this question may help in deciding the computational complexity of these distance measures, as well as allowing to design more efficient algorithms for restricted input classes that avoid certain free space patterns. Therefore, we study the inverse problem: Given a potential free space diagram, do there exist curves that generate this diagram? Our problem of interest is closely tied to the classic Distance Geometry problem. We settle the complexity of Distance Geometry in R>2\mathbb{R}^{> 2}, showing R\exists\mathbb{R}-hardness. We use this to show that for curves in R2\mathbb{R}^{\ge 2}, the realizability problem is R\exists\mathbb{R}-complete, both for continuous and for discrete Fr\'echet distance. We prove that the continuous case in R1\mathbb{R}^1 is only weakly NP-hard, and we provide a pseudo-polynomial time algorithm and show that it is fixed-parameter tractable. Interestingly, for the discrete case in R1\mathbb{R}^1, we show that the problem becomes solvable in polynomial time.Comment: 26 pages, 12 figures, 1 table, International Symposium on Algorithms And Computations (ISAAC 2023

    Fr\'echet Distance for Uncertain Curves

    Full text link
    In this paper we study a wide range of variants for computing the (discrete and continuous) Fr\'echet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fr\'echet distance, which are the minimum and maximum Fr\'echet distance for any realisations of the curves. We prove that both the upper and lower bound problems are NP-hard for the continuous Fr\'echet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fr\'echet distance. In contrast, the lower bound (discrete and continuous) Fr\'echet distance can be computed in polynomial time. Furthermore, we show that computing the expected discrete Fr\'echet distance is #P-hard when the uncertainty regions are modelled as point sets or line segments. The construction also extends to show #P-hardness for computing the continuous Fr\'echet distance when regions are modelled as point sets. On the positive side, we argue that in any constant dimension there is a FPTAS for the lower bound problem when Δ/δ\Delta / \delta is polynomially bounded, where δ\delta is the Fr\'echet distance and Δ\Delta bounds the diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision problem when the regions are convex and roughly δ\delta-separated. Finally, we also study the setting with Sakoe--Chiba time bands, where we restrict the alignment between the two curves, and give polynomial-time algorithms for upper bound and expected discrete and continuous Fr\'echet distance for uncertainty regions modelled as point sets.Comment: 48 pages, 11 figures. This is the full version of the paper to be published in ICALP 202

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    15th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

    Get PDF

    Fast and Exact Convex Hull Simplification

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF
    corecore