1,851 research outputs found

    General and specific effects of early-life psychosocial adversities on adolescent grey matter volume

    Get PDF
    AbstractExposure to childhood adversities (CA) is associated with subsequent alterations in regional brain grey matter volume (GMV). Prior studies have focused mainly on severe neglect and maltreatment. The aim of this study was to determine in currently healthy adolescents if exposure to more common forms of CA results in reduced GMV. Effects on brain structure were investigated using voxel-based morphometry in a cross-sectional study of youth recruited from a population-based longitudinal cohort. 58 participants (mean age=18.4) with (n=27) or without (n=31) CA exposure measured retrospectively from maternal interview were included in the study. Measures of recent negative life events (RNLE) recorded at 14 and 17years, current depressive symptoms, gender, participant/parental psychiatric history, current family functioning perception and 5-HTTLPR genotype were covariates in analyses. A multivariate analysis of adversities demonstrated a general association with a widespread distributed neural network consisting of cortical midline, lateral frontal, temporal, limbic, and cerebellar regions. Univariate analyses showed more specific associations between adversity measures and regional GMV: CA specifically demonstrated reduced vermis GMV and past psychiatric history with reduced medial temporal lobe volume. In contrast RNLE aged 14 was associated with increased lateral cerebellar and anterior cingulate GMV. We conclude that exposure to moderate levels of childhood adversities occurring during childhood and early adolescence exerts effects on the developing adolescent brain. Reducing exposure to adverse social environments during early life may optimize typical brain development and reduce subsequent mental health risks in adult life

    Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures

    Get PDF
    International audienceEnhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8–12 years) and adolescents (n = 12; 13–17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated

    Brain Structure in Older Adult Siblings

    Get PDF
    Considerable variability exists in patterns of brain aging within and across individuals. Quantifying familial contributions to brain structure in late life may help us understand this variability. We estimated heritability of gray and white matter volumes and cortical thickness in a sample of older adult full siblings: 2-4 individuals per pedigree; N = 75). Estimation of heritability was based on computation of intraclass correlations. Heritability estimates were higher for total cortical thickness compared to volumes. There was no evidence of overall laterality in heritability estimates, or differences between primary sensory and association regions. There was a tendency for lower estimates of heritability in the frontal lobe relative to other lobes, but greater estimates for amygdala and hippocampus relative to parahippocampus and for caudate relative to putamen and globus pallidus. Strong heritability was observed across callosal regions. This study provides a comprehensive assessment of heritability of brain structure in older adults

    Cerebral glucose metabolism on positron emission tomography of children

    Get PDF
    Establishing the normative range of age-dependent fluorodeoxyglucose (FDG) uptake in the developing brain is necessary for understanding regional quantitative analysis of positron emission tomography (PET) brain images in children and also to provide functional information on brain development. We analyzed head sections of FDG PET/computed tomography (CT) images for 115 patients (5 months to 23 years) without central nervous system disease before treatment, as PET studies are not performed on healthy children owing to ethical considerations and the risk of radiation exposure. We investigated the changes in FDG uptake and established age-associated normative ranges of cerebral FDG. Head sections of FDG PET/CT images were registered to a population-based probabilistic atlas of human cortical structures. Gray matter of 56 brain structures was defined on normalized PET images according to the atlas. To avoid individual and experimental confounding factors, the relative standardized uptake value (SUV) over the cerebellum of each structure was calculated. Relative SUVs were analyzed by ANOVA and modeled using generalized estimating equalization analysis with false discovery rate control. Age and structure were significant factors affecting SUVs. Anatomic proximity had little effect on FDG uptake. Linear and quadratic developmental trajectories were observed on absolute and relative SUVs, respectively. An increase from posterior-to-anterior and superior-to-inferior pattern was observed in both absolute SUV increase rate and relative SUV peak age. The SUV of each structure was modeled with respect to age, and these models can serve as baselines for the quantitative analysis of cerebral FDG-PET images of children

    ANS: Aberrant Neurodevelopment of the Social Cognition Network in Adolescents with Autism Spectrum Disorders

    Get PDF
    Background: Autism spectrum disorders (ASD) are characterized by aberrant neurodevelopment. Although the ASD brain undergoes precocious growth followed by decelerated maturation during early postnatal period of childhood, the neuroimaging approach has not been empirically applied to investigate how the ASD brain develops during adolescence. Methodology/Principal Findings: We enrolled 25 male adolescents with high functioning ASD and 25 typically developing controls for voxel-based morphometric analysis of structural magnetic resonance image. Results indicate that there is an imbalance of regional gray matter volumes and concentrations along with no global brain enlargement in adolescents with high functioning ASD relative to controls. Notably, the right inferior parietal lobule, a role in social cognition, have a significant interaction of age by groups as indicated by absence of an age-related gain of regional gray matter volume and concentration for neurodevelopmental maturation during adolescence. Conclusions/Significance: The findings indicate the neural correlates of social cognition exhibits aberrant neurodevelopment during adolescence in ASD, which may cast some light on the brain growth dysregulation hypothesis. The period of abnormal brain growth during adolescence may be characteristic of ASD. Age effects must be taken into account while measures of structural neuroimaging have been clinically put forward as potential phenotypes for ASD
    corecore