7,948 research outputs found

    OctNetFusion: Learning Depth Fusion from Data

    Full text link
    In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.Comment: 3DV 2017, https://github.com/griegler/octnetfusio

    Live User-guided Intrinsic Video For Static Scenes

    Get PDF
    We present a novel real-time approach for user-guided intrinsic decomposition of static scenes captured by an RGB-D sensor. In the first step, we acquire a three-dimensional representation of the scene using a dense volumetric reconstruction framework. The obtained reconstruction serves as a proxy to densely fuse reflectance estimates and to store user-provided constraints in three-dimensional space. User constraints, in the form of constant shading and reflectance strokes, can be placed directly on the real-world geometry using an intuitive touch-based interaction metaphor, or using interactive mouse strokes. Fusing the decomposition results and constraints in three-dimensional space allows for robust propagation of this information to novel views by re-projection.We leverage this information to improve on the decomposition quality of existing intrinsic video decomposition techniques by further constraining the ill-posed decomposition problem. In addition to improved decomposition quality, we show a variety of live augmented reality applications such as recoloring of objects, relighting of scenes and editing of material appearance

    Adversarial Semantic Scene Completion from a Single Depth Image

    Full text link
    We propose a method to reconstruct, complete and semantically label a 3D scene from a single input depth image. We improve the accuracy of the regressed semantic 3D maps by a novel architecture based on adversarial learning. In particular, we suggest using multiple adversarial loss terms that not only enforce realistic outputs with respect to the ground truth, but also an effective embedding of the internal features. This is done by correlating the latent features of the encoder working on partial 2.5D data with the latent features extracted from a variational 3D auto-encoder trained to reconstruct the complete semantic scene. In addition, differently from other approaches that operate entirely through 3D convolutions, at test time we retain the original 2.5D structure of the input during downsampling to improve the effectiveness of the internal representation of our model. We test our approach on the main benchmark datasets for semantic scene completion to qualitatively and quantitatively assess the effectiveness of our proposal.Comment: 2018 International Conference on 3D Vision (3DV

    Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis

    Full text link
    We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first infers a low-resolution -- but complete -- output. To this end, we introduce a 3D-Encoder-Predictor Network (3D-EPN) which is composed of 3D convolutional layers. The network is trained to predict and fill in missing data, and operates on an implicit surface representation that encodes both known and unknown space. This allows us to predict global structure in unknown areas at high accuracy. We then correlate these intermediary results with 3D geometry from a shape database at test time. In a final pass, we propose a patch-based 3D shape synthesis method that imposes the 3D geometry from these retrieved shapes as constraints on the coarsely-completed mesh. This synthesis process enables us to reconstruct fine-scale detail and generate high-resolution output while respecting the global mesh structure obtained by the 3D-EPN. Although our 3D-EPN outperforms state-of-the-art completion method, the main contribution in our work lies in the combination of a data-driven shape predictor and analytic 3D shape synthesis. In our results, we show extensive evaluations on a newly-introduced shape completion benchmark for both real-world and synthetic data
    corecore