20 research outputs found

    From medical images to individualized cardiac mechanics: A Physiome approach

    Get PDF
    Cardiac mechanics is a branch of science that deals with forces, kinematics, and material properties of the heart, which is valuable for clinical applications and physiological studies. Although anatomical and biomechanical experiments are necessary to provide the fundamental knowledge of cardiac mechanics, the invasive nature of the procedures limits their further applicability. In consequence, noninvasive alternatives are required, and cardiac images provide an excellent source of subject-specific and in vivo information. Noninvasive and individualized cardiac mechanical studies can be achieved through coupling general physiological models derived from invasive experiments with subject-specific information extracted from medical images. Nevertheless, as data extracted from images are gross, sparse, or noisy, and do not directly provide the information of interest in general, the couplings between models and measurements are complicated inverse problems with numerous issues need to be carefully considered. The goal of this research is to develop a noninvasive framework for studying individualized cardiac mechanics through systematic coupling between cardiac physiological models and medical images according to their respective merits. More specifically, nonlinear state-space filtering frameworks for recovering individualized cardiac deformation and local material parameters of realistic nonlinear constitutive laws have been proposed. To ensure the physiological meaningfulness, clinical relevance, and computational feasibility of the frameworks, five key issues have to be properly addressed, including the cardiac physiological model, the heart representation in the computational environment, the information extraction from cardiac images, the coupling between models and image information, and also the computational complexity. For the cardiac physiological model, a cardiac physiome model tailored for cardiac image analysis has been proposed to provide a macroscopic physiological foundation for the study. For the heart representation, a meshfree method has been adopted to facilitate implementations and spatial accuracy refinements. For the information extraction from cardiac images, a registration method based on free-form deformation has been adopted for robust motion tracking. For the coupling between models and images, state-space filtering has been applied to systematically couple the models with the measurements. For the computational complexity, a mode superposition approach has been adopted to project the system into an equivalent mathematical space with much fewer dimensions for computationally feasible filtering. Experiments were performed on both synthetic and clinical data to verify the proposed frameworks

    Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

    Get PDF
    The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references

    Uncertainty Quantification and Reduction in Cardiac Electrophysiological Imaging

    Get PDF
    Cardiac electrophysiological (EP) imaging involves solving an inverse problem that infers cardiac electrical activity from body-surface electrocardiography data on a physical domain defined by the body torso. To avoid unreasonable solutions that may fit the data, this inference is often guided by data-independent prior assumptions about different properties of cardiac electrical sources as well as the physical domain. However, these prior assumptions may involve errors and uncertainties that could affect the inference accuracy. For example, common prior assumptions on the source properties, such as fixed spatial and/or temporal smoothness or sparseness assumptions, may not necessarily match the true source property at different conditions, leading to uncertainties in the inference. Furthermore, prior assumptions on the physical domain, such as the anatomy and tissue conductivity of different organs in the thorax model, represent an approximation of the physical domain, introducing errors to the inference. To determine the robustness of the EP imaging systems for future clinical practice, it is important to identify these errors/uncertainties and assess their impact on the solution. This dissertation focuses on the quantification and reduction of the impact of uncertainties caused by prior assumptions/models on cardiac source properties as well as anatomical modeling uncertainties on the EP imaging solution. To assess the effect of fixed prior assumptions/models about cardiac source properties on the solution of EP imaging, we propose a novel yet simple Lp-norm regularization method for volumetric cardiac EP imaging. This study reports the necessity of an adaptive prior model (rather than fixed model) for constraining the complex spatiotemporally changing properties of the cardiac sources. We then propose a multiple-model Bayesian approach to cardiac EP imaging that employs a continuous combination of prior models, each re-effecting a specific spatial property for volumetric sources. The 3D source estimation is then obtained as a weighted combination of solutions across all models. Including a continuous combination of prior models, our proposed method reduces the chance of mismatch between prior models and true source properties, which in turn enhances the robustness of the EP imaging solution. To quantify the impact of anatomical modeling uncertainties on the EP imaging solution, we propose a systematic statistical framework. Founded based on statistical shape modeling and unscented transform, our method quantifies anatomical modeling uncertainties and establish their relation to the EP imaging solution. Applied on anatomical models generated from different image resolutions and different segmentations, it reports the robustness of EP imaging solution to these anatomical shape-detail variations. We then propose a simplified anatomical model for the heart that only incorporates certain subject-specific anatomical parameters, while discarding local shape details. Exploiting less resources and processing for successful EP imaging, this simplified model provides a simple clinically-compatible anatomical modeling experience for EP imaging systems. Different components of our proposed methods are validated through a comprehensive set of synthetic and real-data experiments, including various typical pathological conditions and/or diagnostic procedures, such as myocardial infarction and pacing. Overall, the methods presented in this dissertation for the quantification and reduction of uncertainties in cardiac EP imaging enhance the robustness of EP imaging, helping to close the gap between EP imaging in research and its clinical application

    Bayesian Inference with Combined Dynamic and Sparsity Models: Application in 3D Electrophysiological Imaging

    Get PDF
    Data-driven inference is widely encountered in various scientific domains to convert the observed measurements into information that cannot be directly observed about a system. Despite the quickly-developing sensor and imaging technologies, in many domains, data collection remains an expensive endeavor due to financial and physical constraints. To overcome the limits in data and to reduce the demand on expensive data collection, it is important to incorporate prior information in order to place the data-driven inference in a domain-relevant context and to improve its accuracy. Two sources of assumptions have been used successfully in many inverse problem applications. One is the temporal dynamics of the system (dynamic structure). The other is the low-dimensional structure of a system (sparsity structure). In existing work, these two structures have often been explored separately, while in most high-dimensional dynamic system they are commonly co-existing and contain complementary information. In this work, our main focus is to build a robustness inference framework to combine dynamic and sparsity constraints. The driving application in this work is a biomedical inverse problem of electrophysiological (EP) imaging, which noninvasively and quantitatively reconstruct transmural action potentials from body-surface voltage data with the goal to improve cardiac disease prevention, diagnosis, and treatment. The general framework can be extended to a variety of applications that deal with the inference of high-dimensional dynamic systems

    Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

    Get PDF
    A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved

    Doctor of Philosophy

    Get PDF
    dissertationImage-based biomechanics, particularly numerical modeling using subject-specific data obtained via imaging, has proven useful for elucidating several biomechanical processes, such as prediction of deformation due to external loads, applicable to both normal function and pathophysiology of various organs. As the field evolves towards applications that stretch the limits of imaging hardware and acquisition time, the information traditionally expected as input for numerical routines often becomes incomplete or ambiguous, and requires specific acquisition and processing strategies to ensure physical accuracy and compatibility with predictive mathematical modeling. These strategies, often derivatives or specializations of traditional mechanics, effectively extend the nominal capability of medical imaging hardware providing subject-specific information coupled with the option of using the results for predictive numerical simulations. This research deals with the development of tools for extracting mechanical measurements from a finite set of imaging data and finite element analysis in the context of constructing structural atlases of the heart, understanding the biomechanics of the venous vasculature, and right ventricular failure. The tools include: (1) application of Hyperelastic Warping image registration to displacement-encoded MRI for reconstructing absolute displacement fields, (2) combination of imaging and a material parameter identification approach to measure morphology, deformation, and mechanical properties of vascular tissue, and (3) extrapolation of diffusion tensor MRI acquired at a single time point for the prediction the structural changes across the cardiac cycle with mechanical simulations. Selected tools were then applied to evaluate structural changes in a reversible animal model for right ventricular failure due to pressure overload

    Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth

    Get PDF
    Appropriate functioning of our body is determined by the mechanical behavior of our organs. An improved understanding of the biomechanical functioning of the soft tissues making up these organs is therefore crucial for the choice for, and development of, efficient clinical treatment strategies focused on patient-specific pathophysiology. This doctoral dissertation describes the passive and active biomechanical behavior of gastrointestinal and cardiovascular tissue, both in the short and long term, through computer models that bridge the cell, tissue and organ scale. Using histological characterization, mechanical testing and medical imaging techniques, virtual esophagus and heart models are developed that simulate the patient-specific biomechanical organ behavior as accurately as possible. In addition to the diagnostic value of these models, the developed modeling technology also allows us to predict the acute and chronic effect of various treatment techniques, through e.g. drugs, surgery and/or medical equipment. Consequently, this dissertation offers insights that will have an unmistakable impact on the personalized medicine of the future.Het correct functioneren van ons lichaam wordt bepaald door het mechanisch gedrag van onze organen. Een verbeterd inzicht in het biomechanisch functioneren van deze zachte weefsels is daarom van cruciale waarde voor de keuze voor, en ontwikkeling van, efficiënte klinische behandelingsstrategieën gefocust op de patiënt-specifieke pathofysiologie. Deze doctoraatsthesis brengt het passieve en actieve biomechanisch gedrag van gastro-intestinaal en cardiovasculair weefsel, zowel op korte als lange termijn, in kaart via computermodellen die een brug vormen tussen cel-, weefsel- en orgaanniveau. Aan de hand van histologische karakterisering, mechanische testen en medische beeldvormingstechnieken worden virtuele slokdarm- en hartmodellen ontwikkeld die het patiënt-specifieke orgaangedrag zo accuraat mogelijk simuleren. Naast de diagnostische waarde van deze modellen, laat de ontwikkelde modelleringstechnologie ook toe om het effect van verschillende behandelingstechnieken, via medicatie, chirurgie en/of medische apparatuur bijvoorbeeld, acuut en chronisch te voorspellen. Bijgevolg biedt deze doctoraatsthesis inzichten die een onmiskenbare impact zullen hebben op de gepersonaliseerde geneeskunde van de toekomst

    Learning with Limited Labeled Data in Biomedical Domain by Disentanglement and Semi-Supervised Learning

    Get PDF
    In this dissertation, we are interested in improving the generalization of deep neural networks for biomedical data (e.g., electrocardiogram signal, x-ray images, etc). Although deep neural networks have attained state-of-the-art performance and, thus, deployment across a variety of domains, similar performance in the clinical setting remains challenging due to its ineptness to generalize across unseen data (e.g., new patient cohort). We address this challenge of generalization in the deep neural network from two perspectives: 1) learning disentangled representations from the deep network, and 2) developing efficient semi-supervised learning (SSL) algorithms using the deep network. In the former, we are interested in designing specific architectures and objective functions to learn representations, where variations in the data are well separated, i.e., disentangled. In the latter, we are interested in designing regularizers that encourage the underlying neural function\u27s behavior toward a common inductive bias to avoid over-fitting the function to small labeled data. Our end goal is to improve the generalization of the deep network for the diagnostic model in both of these approaches. In disentangled representations, this translates to appropriately learning latent representations from the data, capturing the observed input\u27s underlying explanatory factors in an independent and interpretable way. With data\u27s expository factors well separated, such disentangled latent space can then be useful for a large variety of tasks and domains within data distribution even with a small amount of labeled data, thus improving generalization. In developing efficient semi-supervised algorithms, this translates to utilizing a large volume of the unlabelled dataset to assist the learning from the limited labeled dataset, commonly encountered situation in the biomedical domain. By drawing ideas from different areas within deep learning like representation learning (e.g., autoencoder), variational inference (e.g., variational autoencoder), Bayesian nonparametric (e.g., beta-Bernoulli process), learning theory (e.g., analytical learning theory), function smoothing (Lipschitz Smoothness), etc., we propose several leaning algorithms to improve generalization in the associated task. We test our algorithms on real-world clinical data and show that our approach yields significant improvement over existing methods. Moreover, we demonstrate the efficacy of the proposed models in the benchmark data and simulated data to understand different aspects of the proposed learning methods. We conclude by identifying some of the limitations of the proposed methods, areas of further improvement, and broader future directions for the successful adoption of AI models in the clinical environment
    corecore