1,549 research outputs found

    Soft tissue structure modelling for use in orthopaedic applications and musculoskeletal biomechanics

    Get PDF
    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Reconstrucción 3D de órgano a partir de imágenes de Tomografía Axial Computarizada (TC) usando Matlab

    Get PDF
    The three-dimensional processing and reconstruction of anatomical regions from medical images allows the application of a set of segmentation and filtering techniques to subsequently perform volumetric reconstructions and thus generate 3D computer representations of human anatomy, which is useful in the field of medicine to facilitate the analysis of human body structures.  In this paper, a 3D reconstruction was performed from the segmentation, based on the differentiation by area, of the organ (kidney) and bone structures from a series of images from an abdominal CT. Also, we implemented an interactive interface for the visualization of the planes (frontal, sagittal and transversal). The interface that shows the different planes and also loads the 3D reconstruction that was generated in a separate process, gives the user the option to select any CT study that he has stored in his computer. This procedure, depending on the field of application, complements the interaction and analysis of anatomical structures to the physician, allowing the planning of a timely treatment that will help the preoperative analysis of complex pathologies and the formulation of surgical strategies.El procesamiento tridimensional y la reconstrucción de las regiones anatómicas a partir de imágenes médicas permiten aplicar un conjunto de técnicas de segmentación y filtrado para para realizar posteriormente reconstrucciones volumétricas y así generar representaciones computacionales en 3D de la anatomía humana, que es útil en el campo de la medicina para facilitar análisis de las estructuras del cuerpo humano.  En este artículo, se realizó una reconstrucción 3D a partir de la segmentación, basada en la diferenciación por área, del órgano(riñón) y estructuras óseas de una serie de imágenes de un TAC abdominal. También, implementamos una interfaz interactiva para la visualización de los planos (frontal, sagital y transversal). La interfaz que muestra los diferentes planos y también carga la reconstrucción 3D que se generó en un proceso aparte, da la opción al usuario de seleccionar cualquier estudio TAC que tenga almacenado en su ordenador. Este procedimiento, según el campo de aplicación, complementa la interacción y análisis de estructuras anatómicas al médico, permite planificar un tratamiento oportuno que ayudará al análisis preoperatorio de patologías complejas y la formulación de estrategias quirúrgicas

    3D MODELLING AND RAPID PROTOTYPING FOR CARDIOVASCULAR SURGICAL PLANNING – TWO CASE STUDIES

    Get PDF
    In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice

    Grid Analysis of Radiological Data

    Get PDF
    IGI-Global Medical Information Science Discoveries Research Award 2009International audienceGrid technologies and infrastructures can contribute to harnessing the full power of computer-aided image analysis into clinical research and practice. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. This chapter reports on the goals, achievements and lessons learned from the AGIR (Grid Analysis of Radiological Data) project. AGIR addresses this challenge through a combined approach. On one hand, leveraging the grid middleware through core grid medical services (data management, responsiveness, compression, and workflows) targets the requirements of medical data processing applications. On the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical use cases both exploits and drives the development of the services

    3DBGrowth: volumetric vertebrae segmentation and reconstruction in magnetic resonance imaging

    Full text link
    Segmentation of medical images is critical for making several processes of analysis and classification more reliable. With the growing number of people presenting back pain and related problems, the semi-automatic segmentation and 3D reconstruction of vertebral bodies became even more important to support decision making. A 3D reconstruction allows a fast and objective analysis of each vertebrae condition, which may play a major role in surgical planning and evaluation of suitable treatments. In this paper, we propose 3DBGrowth, which develops a 3D reconstruction over the efficient Balanced Growth method for 2D images. We also take advantage of the slope coefficient from the annotation time to reduce the total number of annotated slices, reducing the time spent on manual annotation. We show experimental results on a representative dataset with 17 MRI exams demonstrating that our approach significantly outperforms the competitors and, on average, only 37% of the total slices with vertebral body content must be annotated without losing performance/accuracy. Compared to the state-of-the-art methods, we have achieved a Dice Score gain of over 5% with comparable processing time. Moreover, 3DBGrowth works well with imprecise seed points, which reduces the time spent on manual annotation by the specialist.Comment: This is a pre-print of an article published in Computer-Based Medical Systems. The final authenticated version is available online at: https://doi.org/10.1109/CBMS.2019.0009

    Natural ventilation design attributes application effect on, indoor natural ventilation performance of a double storey, single unit residential building

    Get PDF
    In establishing a good indoor thermal condition, air movement is one of the important parameter to be considered to provide indoor fresh air for occupants. Due to the public awareness on environment impact, people has been increasingly attentive to passive design in achieving good condition of indoor building ventilation. Throughout case studies, significant building attributes were found giving effect on building indoor natural ventilation performance. The studies were categorized under vernacular houses, contemporary houses with vernacular element and contemporary houses. The indoor air movement of every each spaces in the houses were compared with the outdoor air movement surrounding the houses to indicate the space’s indoor natural ventilation performance. Analysis found the wind catcher element appears to be the most significant attribute to contribute most to indoor natural ventilation. Wide opening was also found to be significant especially those with louvers. Whereas it is also interesting to find indoor layout design is also significantly giving impact on the performance. The finding indicates that a good indoor natural ventilation is not only dictated by having proper openings at proper location of a building, but also on how the incoming air movement is managed throughout the interior spaces by proper layout. Understanding on the air pressure distribution caused by indoor windward and leeward side is important in directing the air flow to desired spaces in producing an overall good indoor natural ventilation performance
    corecore