816 research outputs found

    Low-latency Cloud-based Volumetric Video Streaming Using Head Motion Prediction

    Full text link
    Volumetric video is an emerging key technology for immersive representation of 3D spaces and objects. Rendering volumetric video requires lots of computational power which is challenging especially for mobile devices. To mitigate this, we developed a streaming system that renders a 2D view from the volumetric video at a cloud server and streams a 2D video stream to the client. However, such network-based processing increases the motion-to-photon (M2P) latency due to the additional network and processing delays. In order to compensate the added latency, prediction of the future user pose is necessary. We developed a head motion prediction model and investigated its potential to reduce the M2P latency for different look-ahead times. Our results show that the presented model reduces the rendering errors caused by the M2P latency compared to a baseline system in which no prediction is performed.Comment: 7 pages, 4 figure

    Immersive Tourism - State of the Art of Immersive Tourism Realities through XR Technology.

    Get PDF

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Extending 3-DoF Metrics to Model User Behaviour Similarity in 6-DoF Immersive Applications

    Get PDF
    Immersive reality technologies, such as Virtual and Augmented Reality, have ushered a new era of user-centric systems, in which every aspect of the coding-delivery-rendering chain is tailored to the interaction of the users. Understanding the actual interactivity and behaviour of the users is still an open challenge and a key step to enabling such a user-centric system. Our main goal is to extend the applicability of existing behavioural methodologies for studying user navigation in the case of 6 Degree-of-Freedom (DoF). Specifically, we first compare the navigation in 6-DoF with its 3-DoF counterpart highlighting the main differences and novelties. Then, we define new metrics aimed at better modelling behavioural similarities between users in a 6-DoF system. We validate and test our solutions on real navigation paths of users interacting with dynamic volumetric media in 6-DoF Virtual Reality conditions. Our results show that metrics that consider both user position and viewing direction better perform in detecting user similarity while navigating in a 6-DoF system. Having easy-to-use but robust metrics that underpin multiple tools and answer the question "how do we detect if two users look at the same content?" open the gate to new solutions for a user-centric syste

    Extending 3-DoF Metrics to Model User Behaviour Similarity in 6-DoF Immersive Applications

    Full text link
    Immersive reality technologies, such as Virtual and Augmented Reality, have ushered a new era of user-centric systems, in which every aspect of the coding--delivery--rendering chain is tailored to the interaction of the users. Understanding the actual interactivity and behaviour of the users is still an open challenge and a key step to enabling such a user-centric system. Our main goal is to extend the applicability of existing behavioural methodologies for studying user navigation in the case of 6 Degree-of-Freedom (DoF). Specifically, we first compare the navigation in 6-DoF with its 3-DoF counterpart highlighting the main differences and novelties. Then, we define new metrics aimed at better modelling behavioural similarities between users in a 6-DoF system. We validate and test our solutions on real navigation paths of users interacting with dynamic volumetric media in 6-DoF Virtual Reality conditions. Our results show that metrics that consider both user position and viewing direction better perform in detecting user similarity while navigating in a 6-DoF system. Having easy-to-use but robust metrics that underpin multiple tools and answer the question ``how do we detect if two users look at the same content?" open the gate to new solutions for a user-centric system
    • …
    corecore