999 research outputs found

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods

    Effective Volumetric Feature Modeling and Coarse Correspondence via Improved 3DSIFT and Spectral Matching

    Get PDF
    This paper presents a nonrigid coarse correspondence computation algorithm for volumetric images. Our matching algorithm first extracts then correlates image features based on a revised and improved 3DSIFT (I3DSIFT) algorithm. With a scale-related keypoint reorientation and descriptor construction, this feature correlation is less sensitive to image rotation and scaling. Then, we present an improved spectral matching (ISM) algorithm on correlated features to obtain a one-to-one mapping between corresponded features. One can effectively extend this feature correspondence to dense correspondence between volume images. Our algorithm can benefit nonrigid volumetric image registration in many tasks such as motion modeling in medical image analysis and processing

    nerf2nerf: Pairwise Registration of Neural Radiance Fields

    Full text link
    We introduce a technique for pairwise registration of neural fields that extends classical optimization-based local registration (i.e. ICP) to operate on Neural Radiance Fields (NeRF) -- neural 3D scene representations trained from collections of calibrated images. NeRF does not decompose illumination and color, so to make registration invariant to illumination, we introduce the concept of a ''surface field'' -- a field distilled from a pre-trained NeRF model that measures the likelihood of a point being on the surface of an object. We then cast nerf2nerf registration as a robust optimization that iteratively seeks a rigid transformation that aligns the surface fields of the two scenes. We evaluate the effectiveness of our technique by introducing a dataset of pre-trained NeRF scenes -- our synthetic scenes enable quantitative evaluations and comparisons to classical registration techniques, while our real scenes demonstrate the validity of our technique in real-world scenarios. Additional results available at: https://nerf2nerf.github.i

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Assessment of surface topography modifications through feature-based registration of areal topography data

    Get PDF
    Surface topography modifications due to wear or other factors are usually investigated by visual and microscopic inspection, and – when quantitative assessment is required – through the computation of surface texture parameters. However, the current state-of-the-art areal topography measuring instruments produce detailed, areal reconstructions of surface topography which, in principle, may allow accurate comparison of the individual topographic formations before and after the modification event. The main obstacle to such an approach is registration, i.e. being able to accurately relocate the two topography datasets (measured before and after modification) in the same coordinate system. The challenge is related to the measurements being performed in independent coordinate systems, and on a surface which, having undergone modifications, may not feature easily-identifiable landmarks suitable for alignment. In this work, an algorithmic registration solution is proposed, based on the automated identification and alignment of matching topographic features. A shape descriptor (adapted from the scale invariant feature transform) is used to identify landmarks. Pairs of matching landmarks are identified by similarity of shape descriptor values. Registration is implemented by resolving the absolute orientation problem to align matched landmarks. The registration method is validated and discussed through application to simulated and real topographies selected as test cases
    • …
    corecore