156 research outputs found

    Development and evaluation of image-guided neuroendoscopy, with investigation of post-imaging brain distortion and accuracy of frameless stereotaxy

    Get PDF
    Neuroendoscopy enables a surgeon to operate deep within the brain whilst limiting morbidity through a minimally invasive approach. Technical advances in illumination, instrumentation and camera design, along with evidence for improved clinical outcome, have increased the indications for this technique and have ensured widespread popularity. However, broader application of neuroendoscopy is restricted by the necessity for direct vision of targets and by spatial disorientation. The aim of this investigation was to overcome these limitations by combining neuronavigation with neuroendoscopy to develop Image-Guided Neuroendoscopy (IGN). The strategy adopted for this was firstly to select, assess and validate a neuronavigation system, secondly to develop methods of endoscope tracking and frameless stereotactic implantation. Thirdly, to assess the impact of post-imaging brain distortion upon neuronavigation, fourthly to correct distortion of the endoscope image and finally to assess the use of graphics overlay in IGN. Laboratory phantom accuracy assessments revealed a mean point localisation error for the navigation system pointers of0.8mm (SD 0.4mm) with CT imaging, for the tracked endoscope of 1.5mm (SD 0.8mm) and for frameless stereotaxy of 1.3mm (SD 0.6mm). An in vivo study revealed a mean Euclidean error of 4.8mm (SD 2.0mm) for frame less stereotactic biopsy. The navigation system was evaluated through a clinical series of 100 cases, the frameless stereotactic technique was employed in 21 brain biopsy procedures and IGN evaluated in 5 procedures. The magnitude of post-imaging brain distortion was determined and correlations discovered with pre-operative image characteristics. The conclusions of this thesis are that IGN can be accomplished with acceptable accuracy, including frameless stereotactic implantation, and that the impact of postimaging brain distortion will not negate the value of IGN in most cases. Thus, the method developed for IGN has overcome both major constraints of neuroendoscopy, enabling endoscopic surgery to pass through and beyond the ventricular wall, to be undertaken safely in cases with distorted anatomy and opening the potential for wider application of these minimally invasive techniques

    Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging

    Get PDF
    Optical coherence tomography can differentiate brain regions with intrinsic contrast and at a micron scale resolution. Such a device can be particularly useful as a realtime neurosurgical guidance tool. We present, to our knowledge, the first full-field swept-source optical coherence tomography system operating near a wavelength of 1310 nm. The proof-of-concept system was integrated with an endoscopic probe tip, that is compatible with deep brain stimulation keyhole neurosurgery. Neuroimaging experiments were performed on ex vivo brain tissues and in vivo in rat brains. Using classification algorithms involving texture features and optical attenuation, images were successfully classified into three brain tissue types

    Neurosurgery and brain shift: review of the state of the art and main contributions of robotics

    Get PDF
    Este artículo presenta una revisión acerca de la neurocirugía, los asistentes robóticos en este tipo de procedimiento, y el tratamiento que se le da al problema del desplazamiento que sufre el tejido cerebral, incluyendo las técnicas para la obtención de imágenes médicas. Se abarca de manera especial el fenómeno del desplazamiento cerebral, comúnmente conocido como brain shift, el cual causa pérdida de referencia entre las imágenes preoperatorias y los volúmenes a tratar durante la cirugía guiada por imágenes médicas. Hipotéticamente, con la predicción y corrección del brain shift sobre el sistema de neuronavegación, se podrían planear y seguir trayectorias de mínima invasión, lo que conllevaría a minimizar el daño a los tejidos funcionales y posiblemente a reducir la morbilidad y mortalidad en estos delicados y exigentes procedimientos médicos, como por ejemplo, en la extirpación de un tumor cerebral. Se mencionan también otros inconvenientes asociados a la neurocirugía y se muestra cómo los sistemas robotizados han ayudado a solventar esta problemática. Finalmente se ponen en relieve las perspectivas futuras de esta rama de la medicina, la cual desde muchas disciplinas busca tratar las dolencias del principal órgano del ser humano.This paper presents a review about neurosurgery, robotic assistants in this type of procedure, and the approach to the problem of brain tissue displacement, including techniques for obtaining medical images. It is especially focused on the phenomenon of brain displacement, commonly known as brain shift, which causes a loss of reference between the preoperative images and the volumes to be treated during image-guided surgery. Hypothetically, with brain shift prediction and correction for the neuronavigation system, minimal invasion trajectories could be planned and shortened. This would reduce damage to functional tissues and possibly lower the morbidity and mortality in delicate and demanding medical procedures such as the removal of a brain tumor. This paper also mentions other issues associated with neurosurgery and shows the way robotized systems have helped solve these problems. Finally, it highlights the future perspectives of neurosurgery, a branch of medicine that seeks to treat the ailments of the main organ of the human body from the perspective of many disciplines

    A Review of Microsurgery Versus Endoscopy: Controversies for Treatment of Colloid Cysts

    Get PDF
    Background: There is controversy about the value of endoscopic methods compared to microsurgical methods in the treatment of challenging colloidal cysts. This study aimed to review the findings of literature which studied microsurgery or neuroendoscopy in the colloid cyst.Methods: An advanced search in PubMed, Science Direct, and Google Scholar databases performed using keywords such as: “microsurgery,” “endoscopy,” “microsurgery versus endoscopy,” and “colloid cysts.”Results: Reviewing the findings of related studies showed some differences in sections of surgical management, microsurgery, endoscopy, complete cyst resection, recurrence rate, length of stay, and complications between the two surgical methods in the treatment of colloid cyst.Conclusion: Despite some disadvantages of endoscopy, it seems this method has more privileges than the other methods

    Neurosurgery for brain metastasis from breast cancer

    Get PDF
    Breast cancer is the most common malignancy among women worldwide, and the main cause of death in patients with breast cancer is metastasis. Metastasis to the central nervous system occurs in 10% to 16% of patients with metastatic breast cancer, and this rate has increased because of recent advancements in systemic chemotherapy. Because of the various treatments available for brain metastasis, accurate diagnosis and evaluation for treatment are important. Magnetic resonance imaging (MRI) is one of the most reliable preoperative examinations not only for diagnosis of metastatic brain tumors but also for estimation of the molecular characteristics of the tumor based on radiographic information such as the number of lesions, solid or ring enhancement, and cyst formation. Surgical resection continues to play an important role in patients with a limited number of brain metastases and a relatively good performance status. A single brain metastasis is a good indication for surgical treatment followed by radiation therapy to obtain longer survival. Surgical removal is also considered for two or more lesions if neurological symptoms are caused by brain lesions of >3 cm with a mass effect or associated hydrocephalus. Although maximal safe resection with minimal morbidity is ideal in the surgical treatment of brain tumors, supramarginal resection can be achieved in select cases. With respect to the resection technique, en bloc resection is generally recommended to avoid leptomeningeal dissemination induced by piecemeal resection. An operating microscope, neuronavigation, and intraoperative neurophysiological monitoring are essential in modern neurosurgical procedures, including tumor resection. More recently, supporting surgical instruments have been introduced. The use of endoscopic surgery has dramatically increased, especially for intraventricular lesions and in transsphenoidal surgery. An exoscope helps neurosurgeons to comfortably operate regardless of patient positioning or anatomy. A tubular retractor can prevent damage to the surrounding brain tissue during surgery and is a useful instrument in combination with both an endoscope and exoscope. Additionally, 5-aminolevulinic acid (5-ALA) is a promising reagent for photodynamic detection of residual tumor tissue. In the near future, novel treatment options such as high-intensity focused ultrasound (HIFU), laser interstitial thermal therapy (LITT), oncolytic virus therapy, and gene therapy will be introduced

    Review of robotic technology for keyhole transcranial stereotactic neurosurgery

    Get PDF
    The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.This work has been partially financed by the NETT Project (FP7-PEOPLE-2011-ITN-289146), ACTIVE Project (FP7-ICT-2009-6-270460), and FCT PhD grant (ref. SFRH/BD/86499/2012)

    Full Issue: Volume 13, Issue 1 - Winter 2018

    Get PDF
    Full Issue: Volume 13, Issue 1 - Winter 201

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system
    corecore