10,264 research outputs found

    Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation

    Full text link
    We propose an attention mechanism for 3D medical image segmentation. The method, named segmentation-by-detection, is a cascade of a detection module followed by a segmentation module. The detection module enables a region of interest to come to attention and produces a set of object region candidates which are further used as an attention model. Rather than dealing with the entire volume, the segmentation module distills the information from the potential region. This scheme is an efficient solution for volumetric data as it reduces the influence of the surrounding noise which is especially important for medical data with low signal-to-noise ratio. Experimental results on 3D ultrasound data of the femoral head shows superiority of the proposed method when compared with a standard fully convolutional network like the U-Net

    Volumetric Attention for 3D Medical Image Segmentation and Detection

    Full text link
    A volumetric attention(VA) module for 3D medical image segmentation and detection is proposed. VA attention is inspired by recent advances in video processing, enables 2.5D networks to leverage context information along the z direction, and allows the use of pretrained 2D detection models when training data is limited, as is often the case for medical applications. Its integration in the Mask R-CNN is shown to enable state-of-the-art performance on the Liver Tumor Segmentation (LiTS) Challenge, outperforming the previous challenge winner by 3.9 points and achieving top performance on the LiTS leader board at the time of paper submission. Detection experiments on the DeepLesion dataset also show that the addition of VA to existing object detectors enables a 69.1 sensitivity at 0.5 false positive per image, outperforming the best published results by 6.6 points.Comment: Accepted by MICCAI 201

    Fully Automatic Segmentation of Lumbar Vertebrae from CT Images using Cascaded 3D Fully Convolutional Networks

    Full text link
    We present a method to address the challenging problem of segmentation of lumbar vertebrae from CT images acquired with varying fields of view. Our method is based on cascaded 3D Fully Convolutional Networks (FCNs) consisting of a localization FCN and a segmentation FCN. More specifically, in the first step we train a regression 3D FCN (we call it "LocalizationNet") to find the bounding box of the lumbar region. After that, a 3D U-net like FCN (we call it "SegmentationNet") is then developed, which after training, can perform a pixel-wise multi-class segmentation to map a cropped lumber region volumetric data to its volume-wise labels. Evaluated on publicly available datasets, our method achieved an average Dice coefficient of 95.77 ±\pm 0.81% and an average symmetric surface distance of 0.37 ±\pm 0.06 mm.Comment: 5 pages and 5 figure
    • …
    corecore