427 research outputs found

    Level sets and non Gaussian integrals of positively homogeneous functions

    Full text link
    We investigate various properties of the sublevel set {x:g(x)1}\{x \,:\,g(x)\leq 1\} and the integration of hh on this sublevel set when gg and hhare positively homogeneous functions. For instance, the latter integral reduces to integrating hexp(g)h\exp(-g) on the whole space RnR^n (a non Gaussian integral) and when gg is a polynomial, then the volume of the sublevel set is a convex function of the coefficients of gg. In fact, whenever hh is nonnegative, the functional ϕ(g(x))h(x)dx\int \phi(g(x))h(x)dx is a convex function of gg for a large class of functions ϕ:R+R\phi:R_+\to R. We also provide a numerical approximation scheme to compute the volume or integrate hh (or, equivalently to approximate the associated non Gaussian integral). We also show that finding the sublevel set {x:g(x)1}\{x \,:\,g(x)\leq 1\} of minimum volume that contains some given subset KK is a (hard) convex optimization problem for which we also propose two convergent numerical schemes. Finally, we provide a Gaussian-like property of non Gaussian integrals for homogeneous polynomials that are sums of squares and critical points of a specific function

    Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

    Full text link
    We complete the complexity classification by degree of minimizing a polynomial over the integer points in a polyhedron in R2\mathbb{R}^2. Previous work shows that optimizing a quadratic polynomial over the integer points in a polyhedral region in R2\mathbb{R}^2 can be done in polynomial time, while optimizing a quartic polynomial in the same type of region is NP-hard. We close the gap by showing that this problem can be solved in polynomial time for cubic polynomials. Furthermore, we show that the problem of minimizing a homogeneous polynomial of any fixed degree over the integer points in a bounded polyhedron in R2\mathbb{R}^2 is solvable in polynomial time. We show that this holds for polynomials that can be translated into homogeneous polynomials, even when the translation vector is unknown. We demonstrate that such problems in the unbounded case can have smallest optimal solutions of exponential size in the size of the input, thus requiring a compact representation of solutions for a general polynomial time algorithm for the unbounded case

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree d\leq d, or (ii) a polytopic Lyapunov function with d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls
    corecore