23,771 research outputs found

    Traffic Speed Data Imputation Method Based on Tensor Completion

    Get PDF
    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches

    Low rank tensor recovery via iterative hard thresholding

    Full text link
    We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based on a variant of the restricted isometry property of the measurement operator adapted to the tensor decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian measurement ensembles satisfy the tensor restricted isometry property with high probability under a certain almost optimal bound on the number of measurements which depends on the corresponding tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor recovery via numerical experiments where we consider recovery from Gaussian random measurements, tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.Comment: 34 page

    Tsirelson's problem and Kirchberg's conjecture

    Full text link
    Tsirelson's problem asks whether the set of nonlocal quantum correlations with a tensor product structure for the Hilbert space coincides with the one where only commutativity between observables located at different sites is assumed. Here it is shown that Kirchberg's QWEP conjecture on tensor products of C*-algebras would imply a positive answer to this question for all bipartite scenarios. This remains true also if one considers not only spatial correlations, but also spatiotemporal correlations, where each party is allowed to apply their measurements in temporal succession; we provide an example of a state together with observables such that ordinary spatial correlations are local, while the spatiotemporal correlations reveal nonlocality. Moreover, we find an extended version of Tsirelson's problem which, for each nontrivial Bell scenario, is equivalent to the QWEP conjecture. This extended version can be conveniently formulated in terms of steering the system of a third party. Finally, a comprehensive mathematical appendix offers background material on complete positivity, tensor products of C*-algebras, group C*-algebras, and some simple reformulations of the QWEP conjecture.Comment: 57 pages, to appear in Rev. Math. Phy
    corecore