153 research outputs found

    Inter-area oscillation damping in large scale power systems with unified power flow controllers

    Get PDF
    Power system oscillations occur in power networks as a result of contingencies such as faults or sudden changes in load or generation. They are detrimental to the operation of the system since they affect system stability and the optimal power flow through it. These oscillations do not usually damp out in tie-lines unless certain controls are applied to the system. Local and inter-area oscillations have traditionally been controlled by Power System Stabilizers (PSS). However, Flexible Alternating Current Transmission Controllers (FACTS) have significant potential as alternatives to PSS. The main goal of this research is to damp inter-area oscillations by Unified Power Flow Controllers (UPFC). UPFC is a series-shunt FACTS device which is used for purposes such as the control of active and reactive power flow through the corridors of the system. However, using supplementary controls and proper coordination of UPFCs, they can be used for fast damping of inter-area oscillations in multi-area power systems --Abstract, page iv

    PI-tuned UPFC damping controllers design for multi-machine power system

    Get PDF
    This paper presents an adaptive multi-objective algorithm based Unified Power Flow Controller (UPFC) tuned for damping oscillations in two-area multi-machine system formulated as multi- objective optimization problem. The algorithms such as, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II) are proposed for tuning the damping controller with speed deviation and control input as conflicting objectives. The proposed algorithm is implemented in the two area multi-machine system using MATLAB Simulink model, and the simulation results were obtained with respect to the characteristics of damping oscillations and the dynamic stability of power systems. The performance measures such as Integral Time Squared Error (ITSE) and Integral Squared Error (ISE) are considered as the objective functions. The results of the two proposed algorithm has been compared and the outcome shows that the MNSGA-II algorithm performs better compared to the NSGA-II algorithm

    Improvement of bus voltage profiles of Nigerian power network in the presence of Static Synchronous Compensator (STATCOM) and Doubly Fed Induction Generator (DFIG)

    Get PDF
    Frequent blackouts and unstable supply of electricity show that the  voltage instability problem has been one of the major challenges facing the power system network in Nigeria. This study investigates the voltage stability analysis of the Nigerian power network in the presence of renewable energy sources; FACTS device is used as a voltage controller. A 330kV, 28-bus power system network was studied using the PSS/E software-based Newton-Raphson load-flow technique. The results show that 10 out of the 28 buses had voltages lying below the statutory limit of 0.95 ≤ 1.05 p.u. The application of STATCOM and DFIG devices on two of the weakest buses restored the voltages to acceptable statutory limits. The total active and reactive power losses were reduced to 18.76% and 18.82% respectively. Keywords: Voltage stability analysis; Integration of renewable energy sources; FACTS controllers, Reactive Power, Power Flow

    Analysis and robust decentralized control of power systems using FACTS devices

    Get PDF
    Today\u27s changing electric power systems create a growing need for flexible, reliable, fast responding, and accurate answers to questions of analysis, simulation, and design in the fields of electric power generation, transmission, distribution, and consumption. The Flexible Alternating Current Transmission Systems (FACTS) technology program utilizes power electronics components to replace conventional mechanical elements yielding increased flexibility in controlling the electric power system. Benefits include decreased response times and improved overall dynamic system behavior. FACTS devices allow the design of new control strategies, e.g., independent control of active and reactive power flows, which were not realizable a decade ago. However, FACTS components also create uncertainties. Besides the choice of the FACTS devices available, decisions concerning the location, rating, and operating scheme must be made. All of them require reliable numerical tools with appropriate stability, accuracy, and validity of results. This dissertation develops methods to model and control electric power systems including FACTS devices on the transmission level as well as the application of the software tools created to simulate, analyze, and improve the transient stability of electric power systems.;The Power Analysis Toolbox (PAT) developed is embedded in the MATLAB/Simulink environment. The toolbox provides numerous models for the different components of a power system and utilizes an advanced data structure that not only increases data organization and transparency but also simplifies the efforts necessary to incorporate new elements. The functions provided facilitate the computation of steady-state solutions and perform steady-state voltage stability analysis, nonlinear dynamic studies, as well as linearization around a chosen operating point.;Applying intelligent control design in the form of a fuzzy power system damping scheme applied to the Unified Power Flow Controller (UPFC) is proposed. Supplementary damping signals are generated based on local active power flow measurements guaranteeing feasibility. The effectiveness of this controller for longitudinal power systems under dynamic conditions is shown using a Two Area - Four Machine system. When large disturbances are applied, simulation results show that this design can enhance power system operation and damping characteristics. Investigations of meshed power systems such as the New England - New York power system are performed to gain further insight into adverse controller effects
    • …
    corecore