2,029 research outputs found

    Full-Speed Range Control of a Symmetrical Six-Phase Automotive IPMSM Drive with a Cascaded DC-link Configuration

    Get PDF
    This work considers the utilization of a symmetrical six-phase interior permanent magnet synchronous machine drive, including a cascaded dc-link configuration, to make up an electric vehicle propulsion system. This way, fast charging capabilities are provided while avoiding the utilization of power semiconductors with high voltage ratings. In this scenario, the control algorithm must deal with the non-linearities of the machine, providing an accurate setpoint command for the whole torque and speed range of the drive. Therefore, cross-coupling effects between the winding sets must be considered, and the voltage of the cascaded dc-link capacitors must be actively monitored and balanced. In view of this, the authors propose a novel control approach that provides all these functionalities. The proposal is experimentally validated in a full-scale 70 kW electric drive prototype, tested in a laboratory set-up and in an electric vehicle under real driving cycle conditions

    Control solutions for multiphase permanent magnet synchronous machine drives applied to electric vehicles

    Get PDF
    207 p.En esta tesis se estudia la utilización de un accionamiento eléctrico basado en una máquina simétrica dual trifásica aplicada al sistema de propulsión de un vehículo eléctrico. Dicho accionamiento está basado en una máquina síncrona de imanes permanentes interiores. Además, dispone de un bus CC con una configuración en cascada. Por otra parte, se incorpora un convertidor CC/CC entre el módulo de baterías y el inversor de seis fases para proveer el vehículo con capacidades de carga rápida, y evitando al mismo tiempo la utilización de semiconductores de potencia con altas tensiones nominales. En este escenario, el algoritmo de control debe hacer frente a las no linealidades de la máquina, proporcionando un comando de consigna preciso para todo el rango de par y velocidad del convertidor. Por lo tanto, deben tenerse en cuenta los efectos de acoplamiento cruzado entre los devanados, y la tensión de los condensadores de enlace en cascada debe controlarse y equilibrarse activamente. En vista de ello, los autores proponen un novedoso enfoque de control que proporciona todas estas funcionalidades. La propuesta se ha validado experimentalmente en un prototipo a escala real de accionamiento eléctrico de 70 kW, probado en un laboratorio y en un vehículo eléctrico en condiciones reales de conducción.Tecnali

    Quasi two-level PWM operation of a nine-arm modular multilevel converter for six-phase medium-voltage motor drives

    Get PDF
    This paper proposes a hybrid converter for medium-voltage six-phase machine drive systems that mixes the operation of a traditional two-level voltage-source inverter and the modular multilevel converter (MMC) to enable operation over a wide frequency range. Topologically, the proposed converter consists of nine arms resembling two sets of three-phase MMCs with three common arms, yielding a nine-arm MMC with a 25% reduction in the number of employed arms compared to a traditional dual three-phase MMC. The multilevel property of a standard MMC is emulated in the proposed converter, however on a two-level basis, resulting in a stepped two-level output voltage waveform. The proposed converter has a reduced footprint with advantages of small voltage steps, modular structure, and ease of scalability. Further, it is able to drive high-power six-phase machines within low operating frequencies at the rated torque. The operating principle of the converter is elaborated, and its modulation scheme is discussed. The features of the proposed converter are verified through simulations and experimentally

    Multiple Three-Phase Induction Generators for Wind Energy Conversion Systems

    Get PDF
    During the past decade, there has been a considerable increase in the number of published works on multiphase machines and drives. This increased interest has been largely driven by a need for the so-called green energy, i.e. energy generated from renewable sources such as wind, and also an increased emphasis on greener means for transportation. Some of the advantages multiphase machines offer over three-phase counterparts are better fault tolerance, smaller current and power per phase, and higher frequency torque ripple. This thesis examines use of a multiphase induction generator in wind energy conversion systems (WECS). In particular, multiphase generators that comprise multiple 3-phase winding sets, where each winding set is supplied using an independent 3-phase voltage source inverter (VSI), are studied. It is claimed that these topologies offer advantages in cases where a WECS is connected to a multitude of independent ac or dc microgrids, systems where a single high-voltage dc link is needed or where a simple fault tolerance is achieved when a complete winding set is switched off. All of these examples require an arbitrary power or current sharing between winding sets. In order to achieve arbitrary current and power sharing, the control can be implemented using multi stator (MS) variables, so that the flux and torque producing currents of each winding set can be arbitrarily set. As an alternative, this thesis uses vector space decomposition (VSD) to implement the control, while individual winding set flux/torque producing currents are governed by finding the relationships between MS and VSD variables. This approach has all the advantages of both MS and VSD, i.e. access to individual winding set variables of MS and the ability to implement control in the multiple decoupled two dimensional subspaces of VSD, while heavy cross coupling between winding set variables, a weakness of MS, is avoided. Since the goal of the thesis is to present use of multiphase machines in WECS, modelling and simulation of a simple multiphase WECS in back-to-back configuration has been performed at first. All systems relevant to machine control where considered, such as grid and machine side VSIs, grid filter, indirect rotor field oriented control, current control in both flux/torque producing and non-producing subspaces, low order harmonic elimination, maximum power point tracking control, and voltage oriented control of the grid side VSI. Moreover, various WECS supply topologies were considered where developed current and power sharing would be a necessary requirement. Development of the proposed current sharing control commences with an analysis of multiple 3-phase machine modelling in terms of both MS and VSD variables. Since the actual control is implemented using decoupled VSD variables, VSD modelling has been studied in detail, resulting in an algorithm for creation of the VSD matrix applicable to any symmetrical or asymmetrical multiphase machine with single or multiple neutral points. Developed algorithm always decouples the machine into orthogonal two-dimensional subspaces and zero sequence components while making sure that all odd-order harmonics are uniquely mapped. Harmonic mapping analysis is offered as well. Next, relationship between MS and VSD variables has been developed by mapping MS variables into VSD subspaces. Since VSD matrix creation algorithm is valid for any multiphase machine, relationship between MS and VSD variables is applicable to any multiple 3-phase machine regardless of the configuration (symmetrical/asymmetrical), number of neutral points or machine type (synchronous or induction). Established relationship between MS and VSD has been used to implement current sharing control in decoupled VSD subspaces of the machine. It is shown that in order to achieve arbitrary current sharing it is only necessary to impose currents in flux/torque non-producing subspaces. Hence, total machine’s flux and torque are not affected at all. Besides verification by Matlab simulations, two topologies are experimentally investigated, a parallel machine side converter configuration and the case when a single high voltage dc link is created by cascading dc-links of the machine side VSIs. In the first case the ability of arbitrary current sharing between winding sets is validated, while the second tested topology demonstrates use of the developed control for the purpose of voltage balancing of the cascaded dc links

    Modelling and control techniques for multiphase electric drives: a phase variable approach

    Get PDF
    Multiphase electric drives are today one of the most relevant research topics for the electrical engineering scientific community, thanks to the many advantages they offer over standard three-phase solutions (e.g., power segmentation, fault-tolerance, optimized performances, torque/power sharing strategies, etc...). They are considered promising solutions in many application areas, like industry, traction and renewable energy integration, and especially in presence of high-power or high-reliability requirements. However, contrarily to the three-phase counterparts, multiphase drives can assume a wider variety of different configurations, concerning both the electrical machine (e.g., symmetrical/asymmetrical windings disposition, concentrated/distributed windings, etc...) and the overall drive topology (e.g., single-star configuration, multiple-star configuration, open-end windings, etc…). This aspect, together with the higher number of variables of the system, can make their analysis and control more challenging, especially when dealing with reconfigurable systems (e.g., in post-fault scenarios). This Ph.D. thesis is focused on the mathematical modelling and on the control of multiphase electric drives. The aim of this research is to develop a generalized model-based approach that can be used in multiple configurations and scenarios, requiring minimal reconfigurations to deal with different machine designs and/or different converter topologies, and suitable both in healthy and in faulty operating conditions. Standard field-oriented approaches for the analysis and control of multiphase drives, directly derived as extensions of the three-phase equivalents, despite being relatively easy and convenient solutions to deal with symmetrical machines, may suffer some hurdles when applied to some asymmetrical configurations, including post-fault layouts. To address these issues, a different approach, completely derived in the phase variable domain, is here developed. The method does not require any vector space decomposition or rotational transformation but instead explicitly considers the mathematical properties of the multiphase machine and the effects of the drive topology (which typically introduces some constraints on the system variables). In this thesis work, the proposed approach is particularized for multiphase permanent magnet synchronous machines and for multiphase synchronous reluctance machines. All the results are obtained through rigorous mathematical derivations, and are supported and validated by both numerical analysis and experimental tests. As proven considering many different configurations and scenarios, the main benefits of the proposed methodology are its generality and flexibility, which make it a viable alternative to standard modelling and control algorithms

    A hybrid nine-arm modular multilevel converter for medium-voltage six-phase machine drives

    Get PDF
    The nine-arm modular multilevel converter (9A-MMC) has been recently proposed as a reduced MMC topology variation for six-phase drive applications, with 25% reduction in the number of employed arms and associated components, compared to a standard dual three-phase MMC, however with a limited output voltage amplitude. This paper proposes a hybrid 9A-MMC comprised of half-bridge submodules (SMs) in both the upper and lower arms, and full-bridge SMs in the middle arms. By employing the negative-voltage state of the full-bridge SMs, the hybrid 9A-MMC avoids the limitations imposed on the dc-link voltage utilization, while achieving further reduction in the component count, compared to a standard 9A-MMC with identical half-bridge SMs. The operating principles of the proposed hybrid 9A-MMC are illustrated with mathematical analysis, while its characteristics are verified through both simulation and experimentation. An assessment of the proposed topology quantifying its employed components is also provided, in comparison to other MMC-based six-phase machine drives

    Switched capacitor based multi-level boost inverter for smart grid applications

    Get PDF
    To link DC power sources to an AC grid, converters are needed. Inverters are the power electronic devices, which are used for this purpose. Conventional inverters employ harmonic filters and transformers that are lossy and expensive. Multilevel inverters (MLIs) are an alternative to conventional ones, proposing reduced total harmonic distortion (THD), increased range of control, and inductor-less design. They generate a stepped waveform, with close similarity to a sine wave. Many distributed sources may be employed in a smart grid. If those sources have minimal THD, the filtering process could be reduced at the point of common coupling. This paper presents two switched capacitor based MLIs, proposing boost capability and low THD. Inverters have inherent charge balancing capability, which eliminates the need for auxiliary circuits and voltage sensors. Inverters switches are modulated using phase opposition disposition pulse-width modulation (PODPWM) method that ease the balancing of the voltage and decrease the losses of switching. Designs were verified by simulation and the output waveforms were introduced

    A novel backup protection scheme for hybrid AC/DC power systems

    Get PDF
    This thesis presents and demonstrates (both via simulation and hardware-based tests) a new protection scheme designed to safeguard hybrid AC/DC distribution networks against DC faults that are not cleared by the main MVDC (Medium Voltage DC) link protection. The protection scheme relies on the apparent impedance measured at the AC "side" of the MVDC link to detect faults on the DC system. It can be readily implemented on existing distance protection relays with no changes to existing measuring equipment. An overview of the literature in this area is presented and it is shown that the protection of MVDC links is only considered at a converter station level. There appears to be no consideration of protecting the MVDC system from the wider AC power system via backup - as would be the case for standard AC distribution network assets, where the failure of main protection would require a (usually remote) backup protection system to operate to clear the fault. Very little literature considers remote backup protection of MVDC links.;To address this issue, the research presented in this thesis characterises the apparent impedance as measured in the neighbouring AC system under various DC fault conditions on an adjacent MVDC link. Initial studies, based on simulations, show that a highly inductive characteristic, in terms of the calculations from the measured AC voltages and currents, is apparent on all three phases in the neighbouring AC system during DC-side pole-to-pole and pole-poleground faults. This response is confirmed via a series of experiments conducted at low voltage in a laboratory environment using scaled down electrical components. From this classification, a fast-acting backup protection methodology, which can detect pole-to-pole and pole-poleground faults within 40 ms, is proposed and trialled through simulation. The solution can be deployed on distance protection relays using a typically unused zone (e.g. zone 4).;New relays could, of course, incorporate this functionality as standard in the future. To maximise confidence and demonstrate the compatibility of the solution, the protection scheme is deployed under a real-time hardware-in-the-loop environment using a commercially available distance protection relay. Suggestions to improve the stability of the proposed solution are discussed and demonstrated. Future areas of work are identified and described. As an appendix, early stage work pertaining to the potential application and benefits of MVDC is presented for two Scottish distribution networks. The findings from this are presented as supplementary material at the end of the thesis.This thesis presents and demonstrates (both via simulation and hardware-based tests) a new protection scheme designed to safeguard hybrid AC/DC distribution networks against DC faults that are not cleared by the main MVDC (Medium Voltage DC) link protection. The protection scheme relies on the apparent impedance measured at the AC "side" of the MVDC link to detect faults on the DC system. It can be readily implemented on existing distance protection relays with no changes to existing measuring equipment. An overview of the literature in this area is presented and it is shown that the protection of MVDC links is only considered at a converter station level. There appears to be no consideration of protecting the MVDC system from the wider AC power system via backup - as would be the case for standard AC distribution network assets, where the failure of main protection would require a (usually remote) backup protection system to operate to clear the fault. Very little literature considers remote backup protection of MVDC links.;To address this issue, the research presented in this thesis characterises the apparent impedance as measured in the neighbouring AC system under various DC fault conditions on an adjacent MVDC link. Initial studies, based on simulations, show that a highly inductive characteristic, in terms of the calculations from the measured AC voltages and currents, is apparent on all three phases in the neighbouring AC system during DC-side pole-to-pole and pole-poleground faults. This response is confirmed via a series of experiments conducted at low voltage in a laboratory environment using scaled down electrical components. From this classification, a fast-acting backup protection methodology, which can detect pole-to-pole and pole-poleground faults within 40 ms, is proposed and trialled through simulation. The solution can be deployed on distance protection relays using a typically unused zone (e.g. zone 4).;New relays could, of course, incorporate this functionality as standard in the future. To maximise confidence and demonstrate the compatibility of the solution, the protection scheme is deployed under a real-time hardware-in-the-loop environment using a commercially available distance protection relay. Suggestions to improve the stability of the proposed solution are discussed and demonstrated. Future areas of work are identified and described. As an appendix, early stage work pertaining to the potential application and benefits of MVDC is presented for two Scottish distribution networks. The findings from this are presented as supplementary material at the end of the thesis

    Grid Converters for Stationary Battery Energy Storage Systems

    Get PDF

    Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing

    Get PDF
    Modular generator and converter topologies are being pursued for large offshore wind turbines to achieve fault tolerance and high reliability. A centralized controller presents a single critical point of failure which has prevented a truly modular and fault tolerant system from being obtained. This study analyses the inverter circuit control requirements during normal operation and grid fault ride-through, and proposes a distributed controller design to allow inverter modules to operate independently of each other. All the modules independently estimate the grid voltage magnitude and position, and the modules are synchronised together over a CAN bus. The CAN bus is also used to interleave the PWM switching of the modules and synchronise the ADC sampling. The controller structure and algorithms are tested by laboratory experiments with respect to normal operation, initial synchronization to the grid, module fault tolerance and grid fault ride-through
    corecore