8,354 research outputs found

    The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics

    Full text link
    The HERA-B Outer Tracker is a large detector with 112674 drift chamber channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping with conditions similar to those expected for the LHC experiments. The front-end readout system, based on the ASD-8 chip and a customized TDC chip, is designed to fulfil the requirements on low noise, high sensitivity, rate tolerance, and high integration density. The TDC system is based on an ASIC which digitizes the time in bins of about 0.5 ns within a total of 256 bins. The chip also comprises a pipeline to store data from 128 events which is required for a deadtime-free trigger and data acquisition system. We report on the development, installation, and commissioning of the front-end electronics, including the grounding and noise suppression schemes, and discuss its performance in the HERA-B experiment

    Real-Time Vocal Tract Modelling

    Get PDF
    To date, most speech synthesis techniques have relied upon the representation of the vocal tract by some form of filter, a typical example being linear predictive coding (LPC). This paper describes the development of a physiologically realistic model of the vocal tract using the well-established technique of transmission line modelling (TLM). This technique is based on the principle of wave scattering at transmission line segment boundaries and may be used in one, two, or three dimensions. This work uses this technique to model the vocal tract using a one-dimensional transmission line. A six-port scattering node is applied in the region separating the pharyngeal, oral, and the nasal parts of the vocal tract
    corecore