179 research outputs found

    Voice Call Capacity Over Wireless Mesh Networks

    Get PDF
    The goal of this thesis is to understand the voice call carrying capacity of an IEEE 802.11b/e based ad hoc network. We begin with the modelling of conversational speech and define a six state semi-Markov voice model based on ITU-T P59 recommendation. We perform a theoretical analysis of the voice model and compare it with results obtained via simulations. Using a Java based IEEE 802.11 medium access layer simulator, we determine the upper-bound for the number of voice calls carried by an ad hoc network. We use a linear topology with the ideal carrier sensing range and evaluate the number of calls carried using packet loss and packet delay as metrics. We observe that, for one, two, three and four hop, 5.5 Mbps IEEE 802.11 wireless links have an upper-bound of eight, six, five, and three voice calls respectively. We then consider a carrier sensing range and a path loss model and compare them with the ideal case. We observe, after considering a carrier sensing range with path loss model, there is a reduction in the number of calls carried by the linear networks. One, two, three and four hop 5.5 Mbps IEEE 802.11 wireless links support eight, five, four, and two voice calls respectively, when a carrier sensing range and a path loss model is considered. We also find that by adopting packet dropping policies at the nodes, we improve the call carrying capacity and quality of service on the network. In our simulations of a two hop network in path loss conditions, we find that, by adopting a time delay based packet dropping policy at the nodes, the number of calls supported simultaneously increased from five to six. In a four hop linear network we find that by total packet loss is reduced by 20%, adopting a random packet dropping policy and by 50% adopting a time delay based packet dropping policy. Although there is no change in number of calls supported, load on the network is reduced

    Wi-Fi QoS improvements for industrial automation

    Get PDF
    Digitalization caused a considerable increase in the use of industrial automation applications. Industrial automation applications use real-time traffic with strict requirements of connection of tens of devices, high-reliability, determinism, low-latency, and synchronization. The current solutions meeting these requirements are wired technologies. However, there is a need for wireless technologies for mobility,less complexity, and quick deployment. There are many studies on cellular technologies for industrial automation scenarios with strict reliability and latency requirements, but not many developments for wireless communications over unlicensed bands. Wireless Fidelity (Wi-Fi) is a commonly used and preferred technology in factory automation since it is supported by many applications and operates on a license free-band. However, there is still room for improving Wi-Fi systems performance for low-latency and high-reliable communication requirements in industrial automation use cases. There are various limitations in the current Wi-Fi system restraining the deployment for time-critical operations. For meeting the strict timing requirements of low delay and jitter in industrial automation applications, Quality of Service (QoS)in Wi-Fi needs to be improved. In this thesis, a new access category in Medium Access Control (MAC) layer for industrial automation applications is proposed.The performance improvement is analyzed with simulations, and a jitter definition for a Wi-Fi system is studied. Then, a fixed Modulation and Coding (MCS) link adaptation method and bounded delay is implemented for time-critical traffic in the simulation cases to observe performance changes. Finally, it is shown that the new access category with no backoff time can decrease the delay and jitter of time-critical applications. The improvements in Wi-Fi QoS are shown in comparison with the current standard, and additional enhancements about using a fixed modulation and coding scheme and implementation of a bounded delay are also analyzed in this thesi

    Virtual PCF: Improving VoIP over WLAN performance with legacy clients

    Get PDF
    Abstract Voice over IP (VoIP) is one of the fastest growing applications on the Internet. Concurrently, 802.11 Wireless LANs (WLANs) have become ubiquitous in residential, enterprise, campus and public networks. Currently the majority of traffic on WLANs is data traffic but as more people use wireless networks as their primary access medium, a greater portion of traffic will be real-time traffic such as VoIP traffic. Unfortunately 802.11 networks are designed to handle delay-insensitive, bursty traffic and perform poorly for VoIP streams. Experimental and analytical results have shown that a single 802.11b access point operating at the maximum 11 Mbps rate can support only 5 to 10 VoIP connections simultaneously. Intuitively, an 11 Mbps link should support approximately 85 bi-directional 64Kbps (G.711) streams. The reason for this under-utilization lies primarily in the Distributed Coordination Function (DCF) used by 802.11 MAC layer. The problem can be addressed by using the optional Point Coordination Function (PCF). However PCF is not widely implemented in commodity hardware nor likely to be. There is a similar problem with the proposed 802.11e standard for quality of service. To solve these problems we propose Virtual PCF, a legacy-client compatible solution to increase the number of simultaneous VoIP calls. We implement Virtual PCF, a scheme which employs a variety of techniques to improve both uplink and downlink VoIP QoS. This alleviates delays and packet loss due to DCF contention and doubles the number of supported VoIP sessions

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    Effects of Data Frame Size Distribution on Wireless Lans

    Get PDF
    The continuous need to replace cables and deploy mobile devices in the communications industry has led to very active research on the utilization of wireless networks. IEEE 802.11 WLAN is known to achieve relatively small throughput performance compared to the underlying physical layer’s transmission rate and this is as a result of large overhead information composed of medium access control header, physical layer preamble information back-off duration control frames (ACK) transmissions and even inter-frame spaces. This paper provides an overview of frame size distribution using the dual fixed frame size as a case in point and subsequently a performance evaluation in a multi-user transmission channel condition is carried out. The distribution of frame size and its effect on the throughput is also investigated. This is done through comparison of various scenarios such as fixed frame size distribution and dual-fixed frame size distribution. The dual- fixed frame size distribution case has both equality and inequality cases and both are investigated. The case of equal frames was found to have improved marginal throughput compared to the other cases. The analysis and measurement results from OPNET simulation has shown that an equal fixed frame size distribution can be efficient in optimizing useful data

    MAC performance analysis for vehicle-to-infrastructure communication

    Full text link
    • …
    corecore