89 research outputs found

    Generation and Propagation of Finite-Amplitude Waves in Flexible Tubes (A)

    Get PDF

    Spatial dissection of a soundfield using spherical harmonic decomposition

    Get PDF
    A real-world soundfield is often contributed by multiple desired and undesired sound sources. The performance of many acoustic systems such as automatic speech recognition, audio surveillance, and teleconference relies on its ability to extract the desired sound components in such a mixed environment. The existing solutions to the above problem are constrained by various fundamental limitations and require to enforce different priors depending on the acoustic condition such as reverberation and spatial distribution of sound sources. With the growing emphasis and integration of audio applications in diverse technologies such as smart home and virtual reality appliances, it is imperative to advance the source separation technology in order to overcome the limitations of the traditional approaches. To that end, we exploit the harmonic decomposition model to dissect a mixed soundfield into its underlying desired and undesired components based on source and signal characteristics. By analysing the spatial projection of a soundfield, we achieve multiple outcomes such as (i) soundfield separation with respect to distinct source regions, (ii) source separation in a mixed soundfield using modal coherence model, and (iii) direction of arrival (DOA) estimation of multiple overlapping sound sources through pattern recognition of the modal coherence of a soundfield. We first employ an array of higher order microphones for soundfield separation in order to reduce hardware requirement and implementation complexity. Subsequently, we develop novel mathematical models for modal coherence of noisy and reverberant soundfields that facilitate convenient ways for estimating DOA and power spectral densities leading to robust source separation algorithms. The modal domain approach to the soundfield/source separation allows us to circumvent several practical limitations of the existing techniques and enhance the performance and robustness of the system. The proposed methods are presented with several practical applications and performance evaluations using simulated and real-life dataset

    Enabling technologies for audio augmented reality systems

    Get PDF
    Audio augmented reality (AAR) refers to technology that embeds computer-generated auditory content into a user's real acoustic environment. An AAR system has specific requirements that set it apart from regular human--computer interfaces: an audio playback system to allow the simultaneous perception of real and virtual sounds; motion tracking to enable interactivity and location-awareness; the design and implementation of auditory display to deliver AAR content; and spatial rendering to display spatialised AAR content. This thesis presents a series of studies on enabling technologies to meet these requirements. A binaural headset with integrated microphones is assumed as the audio playback system, as it allows mobility and precise control over the ear input signals. Here, user position and orientation tracking methods are proposed that rely on speech signals recorded at the binaural headset microphones. To evaluate the proposed methods, the head orientations and positions of three conferees engaged in a discussion were tracked. The binaural microphones improved tracking performance substantially. The proposed methods are applicable to acoustic tracking with other forms of user-worn microphones. Results from a listening test investigating the effect of auditory display parameters on user performance are reported. The parameters studied were derived from the design choices to be made when implementing auditory display. The results indicate that users are able to detect a sound sample among distractors and estimate sample numerosity accurately with both speech and non-speech audio, if the samples are presented with adequate temporal separation. Whether or not samples were separated spatially had no effect on user performance. However, with spatially separated samples, users were able to detect a sample among distractors and simultaneously localise it. The results of this study are applicable to a variety of AAR applications that require conveying sample presence or numerosity. Spatial rendering is commonly implemented by convolving virtual sounds with head-related transfer functions (HRTFs). Here, a framework is proposed that interpolates HRTFs measured at arbitrary directions and distances. The framework employs Delaunay triangulation to group HRTFs into subsets suitable for interpolation and barycentric coordinates as interpolation weights. The proposed interpolation framework allows the realtime rendering of virtual sources in the near-field via HRTFs measured at various distances

    Robust Multichannel Microphone Beamforming

    No full text
    In this thesis, a method for the design and implementation of a spatially robust multichannel microphone beamforming system is presented. A set of spatial correlation functions are derived for 2D and 3D far-field/near-field scenarios based on von Mises(-Fisher), Gaussian, and uniform source location distributions. These correlation functions are used to design spatially robust beamformers and blocking beamformers (nullformers) designed to enhance or suppress a known source, where the target source location is not perfectly known due to either an incorrect location estimate or movement of the target while the beamformers are active. The spatially robust beam/null-formers form signal and interferer plus noise references which can be further processed via a blind source separation algorithm to remove mutual components - removing the interference and sensor noise from the signal path and vice versa. The noise reduction performance of the combined beamforming and blind source separation system approaches that of a perfect information MVDR beamformer under reverberant conditions. It is demonstrated that the proposed algorithm can be implemented on low-power hardware with good performance on hardware similar to current mobile platforms using a four-element microphone array
    corecore