440 research outputs found

    End-to-End Open Vocabulary Keyword Search With Multilingual Neural Representations

    Full text link
    Conventional keyword search systems operate on automatic speech recognition (ASR) outputs, which causes them to have a complex indexing and search pipeline. This has led to interest in ASR-free approaches to simplify the search procedure. We recently proposed a neural ASR-free keyword search model which achieves competitive performance while maintaining an efficient and simplified pipeline, where queries and documents are encoded with a pair of recurrent neural network encoders and the encodings are combined with a dot-product. In this article, we extend this work with multilingual pretraining and detailed analysis of the model. Our experiments show that the proposed multilingual training significantly improves the model performance and that despite not matching a strong ASR-based conventional keyword search system for short queries and queries comprising in-vocabulary words, the proposed model outperforms the ASR-based system for long queries and queries that do not appear in the training data.Comment: Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 202

    Tokenization with Factorized Subword Encoding

    Full text link
    In recent years, language models have become increasingly larger and more complex. However, the input representations for these models continue to rely on simple and greedy subword tokenization methods. In this paper, we propose a novel tokenization method that factorizes subwords onto discrete triplets using a VQ-VAE model. The effectiveness of the proposed tokenization method, referred to as the Factorizer, is evaluated on language modeling and morpho-syntactic tasks for 7 diverse languages. Results indicate that this method is more appropriate and robust for morphological tasks than the commonly used byte-pair encoding (BPE) tokenization algorithm.Comment: Findings of ACL 202

    Using auxiliary sources of knowledge for automatic speech recognition

    Get PDF
    Standard hidden Markov model (HMM) based automatic speech recognition (ASR) systems usually use cepstral features as acoustic observation and phonemes as subword units. Speech signal exhibits wide range of variability such as, due to environmental variation, speaker variation. This leads to different kinds of mismatch, such as, mismatch between acoustic features and acoustic models or mismatch between acoustic features and pronunciation models (given the acoustic models). The main focus of this work is on integrating auxiliary knowledge sources into standard ASR systems so as to make the acoustic models more robust to the variabilities in the speech signal. We refer to the sources of knowledge that are able to provide additional information about the sources of variability as auxiliary sources of knowledge. The auxiliary knowledge sources that have been primarily investigated in the present work are auxiliary features and auxiliary subword units. Auxiliary features are secondary source of information that are outside of the standard cepstral features. They can be estimation from the speech signal (e.g., pitch frequency, short-term energy and rate-of-speech), or additional measurements (e.g., articulator positions or visual information). They are correlated to the standard acoustic features, and thus can aid in estimating better acoustic models, which would be more robust to variabilities present in the speech signal. The auxiliary features that have been investigated are pitch frequency, short-term energy and rate-of-speech. These features can be modelled in standard ASR either by concatenating them to the standard acoustic feature vectors or by using them to condition the emission distribution (as done in gender-based acoustic modelling). We have studied these two approaches within the framework of hybrid HMM/artificial neural networks based ASR, dynamic Bayesian network based ASR and TANDEM system on different ASR tasks. Our studies show that by modelling auxiliary features along with standard acoustic features the performance of the ASR system can be improved in both clean and noisy conditions. We have also proposed an approach to evaluate the adequacy of the baseform pronunciation model of words. This approach allows us to compare between different acoustic models as well as to extract pronunciation variants. Through the proposed approach to evaluate baseform pronunciation model, we show that the matching and discriminative properties of single baseform pronunciation can be improved by integrating auxiliary knowledge sources in standard ASR. Standard ASR systems use usually phonemes as the subword units in a Markov chain to model words. In the present thesis, we also study a system where word models are described by two parallel chains of subword units: one for phonemes and the other are for graphemes (phoneme-grapheme based ASR). Models for both types of subword units are jointly learned using maximum likelihood training. During recognition, decoding is performed using either or both of the subword unit chains. In doing so, we thus have used graphemes as auxiliary subword units. The main advantage of using graphemes is that the word models can be defined easily using the orthographic transcription, thus being relatively noise free as compared to word models based upon phoneme units. At the same time, there are drawbacks to using graphemes as subword units, since there is a weak correspondence between the grapheme and the phoneme in languages such as English. Experimental studies conducted for American English on different ASR tasks have shown that the proposed phoneme-grapheme based ASR system can perform better than the standard ASR system that uses only phonemes as its subword units. Furthermore, while modelling context-dependent graphemes (similar to context-dependent phonemes), we observed that context-dependent graphemes behave like phonemes. ASR studies conducted on different tasks showed that by modelling context-dependent graphemes only (without any phonetic information) performance competitive to the state-of-the-art context-dependent phoneme-based ASR system can be obtained

    Stochastic Pronunciation Modelling for Out-of-Vocabulary Spoken Term Detection

    Get PDF
    Spoken term detection (STD) is the name given to the task of searching large amounts of audio for occurrences of spoken terms, which are typically single words or short phrases. One reason that STD is a hard task is that search terms tend to contain a disproportionate number of out-of-vocabulary (OOV) words. The most common approach to STD uses subword units. This, in conjunction with some method for predicting pronunciations of OOVs from their written form, enables the detection of OOV terms but performance is considerably worse than for in-vocabulary terms. This performance differential can be largely attributed to the special properties of OOVs. One such property is the high degree of uncertainty in the pronunciation of OOVs. We present a stochastic pronunciation model (SPM) which explicitly deals with this uncertainty. The key insight is to search for all possible pronunciations when detecting an OOV term, explicitly capturing the uncertainty in pronunciation. This requires a probabilistic model of pronunciation, able to estimate a distribution over all possible pronunciations. We use a joint-multigram model (JMM) for this and compare the JMM-based SPM with the conventional soft match approach. Experiments using speech from the meetings domain demonstrate that the SPM performs better than soft match in most operating regions, especially at low false alarm probabilities. Furthermore, SPM and soft match are found to be complementary: their combination provides further performance gains

    Stochastic Pronunciation Modelling for Spoken Term Detection

    Get PDF
    A major challenge faced by a spoken term detection (STD) system is the detection of out-of-vocabulary (OOV) terms. Although a subword-based STD system is able to detect OOV terms, performance reduction is always observed compared to in-vocabulary terms. Current approaches to STD do not acknowledge the particular properties of OOV terms, such as pronunciation uncertainty. In this paper, we use a stochastic pronunciation model to deal with the uncertain pronunciations of OOV terms. By considering all possible term pronunciations, predicted by a joint-multigram model, we observe a significant performance improvement

    Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers

    Full text link
    The massive amounts of digitized historical documents acquired over the last decades naturally lend themselves to automatic processing and exploration. Research work seeking to automatically process facsimiles and extract information thereby are multiplying with, as a first essential step, document layout analysis. If the identification and categorization of segments of interest in document images have seen significant progress over the last years thanks to deep learning techniques, many challenges remain with, among others, the use of finer-grained segmentation typologies and the consideration of complex, heterogeneous documents such as historical newspapers. Besides, most approaches consider visual features only, ignoring textual signal. In this context, we introduce a multimodal approach for the semantic segmentation of historical newspapers that combines visual and textual features. Based on a series of experiments on diachronic Swiss and Luxembourgish newspapers, we investigate, among others, the predictive power of visual and textual features and their capacity to generalize across time and sources. Results show consistent improvement of multimodal models in comparison to a strong visual baseline, as well as better robustness to high material variance
    corecore