424 research outputs found

    An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of Electrodynamics

    Full text link
    In plasma simulations, where the speed of light divided by a characteristic length is at a much higher frequency than other relevant parameters in the underlying system, such as the plasma frequency, implicit methods begin to play an important role in generating efficient solutions in these multi-scale problems. Under conditions of scale separation, one can rescale Maxwell's equations in such a way as to give a magneto static limit known as the Darwin approximation of electromagnetics. In this work, we present a new approach to solve Maxwell's equations based on a Method of Lines Transpose (MOLT^T) formulation, combined with a fast summation method with computational complexity O(NlogN)O(N\log{N}), where NN is the number of grid points (particles). Under appropriate scaling, we show that the proposed schemes result in asymptotic preserving methods that can recover the Darwin limit of electrodynamics

    Vlasov versus reduced kinetic theories for helically symmetric equilibria

    Full text link
    A new constant of motion for helically symmetric equilibria in the vicinity of the magnetic axis is obtained in the framework of Vlasov theory. In view of this constant of motion the Vlasov theory is compared with drift kinetic and gyrokinetic theories near axis. It turns out that as in the case of axisymmetric equilibria [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas 18, 064507 (2011)] the Vlasov current density thereon can differ appreciably from the drift kinetic and gyrokinetic current densities. This indicates some limitation on the implications of reduced kinetic theories, in particular as concerns the physics of energetic particles in the central region of magnetically confined plasmas.Comment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1104.042

    A dynamical adaptive tensor method for the Vlasov-Poisson system

    Get PDF
    A numerical method is proposed to solve the full-Eulerian time-dependent Vlasov-Poisson system in high dimension. The algorithm relies on the construction of a tensor decomposition of the solution whose rank is adapted at each time step. This decomposition is obtained through the use of an efficient modified Progressive Generalized Decomposition (PGD) method, whose convergence is proved. We suggest in addition a symplectic time-discretization splitting scheme that preserves the Hamiltonian properties of the system. This scheme is naturally obtained by considering the tensor structure of the approximation. The efficiency of our approach is illustrated through time-dependent 2D-2D numerical examples

    Asymptotic-Preserving methods and multiscale models for plasma physics

    Get PDF
    The purpose of the present paper is to provide an overview of As ymptotic- Preserving methods for multiscale plasma simulations by ad dressing three sin- gular perturbation problems. First, the quasi-neutral lim it of fluid and kinetic models is investigated in the framework of non magnetized as well as magne- tized plasmas. Second, the drift limit for fluid description s of thermal plasmas under large magnetic fields is addressed. Finally efficient nu merical resolutions of anisotropic elliptic or diffusion equations arising in ma gnetized plasma simu- lation are reviewed

    Vlasov simulation in multiple spatial dimensions

    Full text link
    A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown promising results, in this paper we present an alternative, the Vlasov Multi Dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement

    Considering Fluctuation Energy as a Measure of Gyrokinetic Turbulence

    Full text link
    In gyrokinetic theory there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain the turbulence. The recent work of Plunk and Tatsuno [Phys. Rev. Lett. 106, 165003 (2011)] reported on the novel consequences that this constraint has on the direction and locality of spectral energy transfer. This paper builds on that work. We provide detailed analysis in support of the results of Plunk and Tatsuno but also significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics) but are general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of the turbulence. Though many open questions remain, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics.Comment: Final version as published. Some cosmetic changes and update of reference

    A combined nodal continuous-discontinuous finite element formulation for the Maxwell problem

    Get PDF
    Continuous Galerkin formulations are appealing due to their low computational cost, whereas discontinuous Galerkin formulation facilitate adaptative mesh refinement and are more accurate in regions with jumps of physical parameters. Since many electromagnetic problems involve materials with different physical properties, this last point is very important. For this reason, in this article we have developed a combined cG–dG formulation for Maxwell’s problem that allows arbitrary finite element spaces with functins continuous in patches of finite elements and discontinuous on the interfaces of these patches. In particular, the second formulation we propose comes from a novel continuous Galerkin formulation that reduces the amount of stabilization introduced in the numerical system. In all cases, we have performed stability and convergence analyses of the methods. The outcome of this work is a new approach that keeps the low CPU cost of recent nodal continuous formulations with the ability to deal with coefficient jumps and adaptivity of discontinuous ones. All these methods have been tested using a problem with singular solution and another one with different materials, in order to prove that in fact the resulting formulations can properly deal with these problems

    Statistical mechanics and dynamics of solvable models with long-range interactions

    Get PDF
    The two-body potential of systems with long-range interactions decays at large distances as V(r)1/rαV(r)\sim 1/r^\alpha, with αd\alpha\leq d, where dd is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties is at the origin of ensemble inequivalence, which implies that specific heat can be negative in the microcanonical ensemble and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity implies that ergodicity may be generically broken. We present here a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Relaxation towards thermodynamic equilibrium can be extremely slow and quasi-stationary states may be present. The understanding of such unusual relaxation process is obtained by the introduction of an appropriate kinetic theory based on the Vlasov equation.Comment: 118 pages, review paper, added references, slight change of conten
    corecore