331 research outputs found

    Viterbi decoding strategies for 5 GHz wireless LAN systems

    Get PDF

    Enhancing MB-OFDM throughput with dual circular 32-QAM

    Get PDF
    Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents an alternative high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.1 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed Dual Circular 32-QAM (DC 32-QAM). The system performance for DC 32-QAM modulation is presented and compared with 16-QAM and DCM1

    Effect of adjacent-channel interference in IEEE 802.11 WLANs

    Get PDF
    Frequency channels are a scarce resource in the ISM bands used by IEEE 802.11 WLANs. Current radio resource management is often limited to a small number of nonoverlapping channels, which leaves only three possible channels in the 2.4GHz band used in IEEE 802.11b/g networks. In this paper we study and quantify the effect of adjacent channel interference, which is caused by transmissions in partially overlapping channels. We propose a model that is able to determine under what circumstances the use of adjacent channels is justified. The model can also be used to assist different radio resource management mechanisms (e.g. transmitted power assignments

    CAPACITY ESTIMATION FOR WIRELESS SPREAD-SPECTRUM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (SS-OFDM)

    Get PDF
    OFDM is a modulation and multiple access technique that has been a centre of attention in these recent years. Since its development for military application in the 1960s, technical implementations of OFDM have appeared in digital audio broadcasting, asymmetric digital subscriber lines (ADSL), high speed definition television terrestrial broadcasting, and other systems. Because of its capabilities, OFDM becomes a potential candidate as a multiple access technique for beyond 3G mobile technology. This project presents a studyon OFDM performance for wireless mobile environment. Spread-spectrum is employed in combination withOFDM. This project paper presents a simulation of spread-spectrum OFDM using MATLAB and capacity estimation of the simulated environment in wireless channel. The results of the simulation are then compared with the theoretical capacity values of available 3G systems

    The application of iterative equalisation to high data rate wireless personal area networks

    Get PDF

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Performance of IEEE 802.11a wireless LAN standard over frequency-selective, slowly fading Nakagami channels in a pulsed jamming environment

    Get PDF
    Wireless local area networks (WLAN) are increasingly important in meeting the needs of the next generation broadband wireless communication systems for both commercial and military applications. In 1999, the Institute of the Electrical and Electronics Engineers (IEEE) 802.11a working group approved a standard for a 5 GHz band WLAN that supports a variable bit rate from 6 to 54 Mbps, and orthogonal frequency-division multiplexing (OFDM) was chosen because of its well-known ability to avoid multipath effects while achieving high data rates by combining a high order sub-carrier modulation with a high rate convolutional code. This thesis investigates the performance of the OFDM based IEEE.802.11a WLAN standard in frequency-selective, slowly fading Nakagami channels in a pulsed-noise jamming environment. Contrary to expectations, the signal-to-interference ratio (SIR) required to achieve a specific does not monotonically decrease when the bit rate decreases. Furthermore, the results show that the performance is improved significantly by adding convolutional coding with Viterbi decoding, and thus highlights the importance of forward error correction (FEC) coding to the performance of wireless communications systems.http://archive.org/details/performanceofiee109453638Lieutenant Junior Grade, Turkish NavyApproved for public release; distribution is unlimited

    The application of forward error correction techniques in wireless ATM

    Get PDF
    Bibliography: pages 116-121.The possibility of providing wireless access to an ATM network promises nomadic users a communication tool of unparalleled power and flexibility. Unfortunately, the physical realization of a wireless A TM system is fraught with technical difficulties, not the least of which is the problem of supporting a traditional ATM protocol over a non-benign wireless link. The objective of this thesis, titled "The Application of Forward Error Correction Techniques in Wireless ATM' is to examine the feasibility of using forward error correction techniques to improve the perceived channel characteristics to the extent that the channel becomes transparent to the higher layers and allows the use of an unmodified A TM protocol over the channel. In the course of the investigation that this dissertation describes, three possible error control strategies were suggested for implementation in a generic wireless channel. These schemes used a combination of forward error correction coding schemes, automatic repeat request schemes and interleavers to combat the impact of bit errors on the performance of the link. The following error control strategies were considered : 1. A stand alone fixed rate Reed-Solomon encoder/decoder with automatic repeat request. 2. A concatenated Reed-Solomon, convolution encoder/decoder with automatic request and convolution interleaving for the convolution codec. 3. A dynamic rate encoder/decoder using either a concatenated Reed-Solomon, convolution scheme or a Reed-Solomon only scheme with variable length Reed-Solomon words
    corecore