4,116 research outputs found

    Supporting Memorization and Problem Solving with Spatial Information Presentations in Virtual Environments

    Get PDF
    While it has been suggested that immersive virtual environments could provide benefits for educational applications, few studies have formally evaluated how the enhanced perceptual displays of such systems might improve learning. Using simplified memorization and problem-solving tasks as representative approximations of more advanced types of learning, we are investigating the effects of providing supplemental spatial information on the performance of learning-based activities within virtual environments. We performed two experiments to investigate whether users can take advantage of a spatial information presentation to improve performance on cognitive processing activities. In both experiments, information was presented either directly in front of the participant or wrapped around the participant along the walls of a surround display. In our first experiment, we found that the spatial presentation caused better performance on a memorization and recall task. To investigate whether the advantages of spatial information presentation extend beyond memorization to higher level cognitive activities, our second experiment employed a puzzle-like task that required critical thinking using the presented information. The results indicate that no performance improvements or mental workload reductions were gained from the spatial presentation method compared to a non-spatial layout for our problem-solving task. The results of these two experiments suggest that supplemental spatial information can support performance improvements for cognitive processing and learning-based activities, but its effectiveness is dependent on the nature of the task and a meaningful use of space

    A deficit of spatial remapping in constructional apraxia after right-hemisphere stroke

    Get PDF
    This Article is provided by the Brunel Open Access Publising Fund - Copyright @ 2010 Oxford University PressConstructional apraxia refers to the inability of patients to copy accurately drawings or three-dimensional constructions. It is a common disorder after right parietal stroke, often persisting after initial problems such as visuospatial neglect have resolved. However, there has been very little experimental investigation regarding mechanisms that might contribute to the syndrome. Here, we examined whether a key deficit might be failure to integrate visual information correctly from one fixation to the next. Specifically, we tested whether this deficit might concern remapping of spatial locations across saccades. Right-hemisphere stroke patients with constructional apraxia were compared to patients without constructional problems and neurologically healthy controls. Participants judged whether a pattern shifted position (spatial task) or changed in pattern (non-spatial task) across two saccades, compared to a control condition with an equivalent delay but without intervening eye movements. Patients with constructional apraxia were found to be significantly impaired in position judgements with intervening saccades, particularly when the first saccade of the sequence was to the right. The importance of these remapping deficits in constructional apraxia was confirmed through a highly significant correlation between saccade task performance and constructional impairment on standard neuropsychological tasks. A second study revealed that even single saccades to the right can impair constructional apraxia patients’ perception of location shifts. These data are consistent with the view that rightward eye movements result in loss of remembered spatial information from previous fixations, presumably due to constructional apraxia patients’ damage to the right-hemisphere regions involved in remapping locations across saccades. These findings provide the first evidence for a deficit in remapping visual information across saccades underlying right-hemisphere constructional apraxia.European Commission Marie Curie Intra-European Fellowship (011457 to C.R.) and a Wellcome Trust Senior Fellowship (to M.H.)

    Meditation Experiences, Self, and Boundaries of Consciousness

    Get PDF
    Our experiences with the external world are possible mainly through vision, hearing, taste, touch, and smell providing us a sense of reality. How the brain is able to seamlessly integrate stimuli from our external and internal world into our sense of reality has yet to be adequately explained in the literature. We have previously proposed a three-dimensional unified model of consciousness that partly explains the dynamic mechanism. Here we further expand our model and include illustrations to provide a better conception of the ill-defined space within the self, providing insight into a unified mind-body concept. In this article, we propose that our senses “super-impose” on an existing dynamic space within us after a slight, imperceptible delay. The existing space includes the entire intrapersonal space and can also be called the “the body’s internal 3D default space”. We provide examples from meditation experiences to help explain how the sense of ‘self’ can be experienced through meditation practice associated with underlying physiological processes that take place through cardio-respiratory synchronization and coherence that is developed among areas of the brain. Meditation practice can help keep the body in a parasympathetic dominant state during meditation, allowing an experience of inner ‘self’. Understanding this physical and functional space could help unlock the mysteries of the function of memory and cognition, allowing clinicians to better recognize and treat disorders of the mind by recommending proven techniques to reduce stress as an adjunct to medication treatment

    Auditory and cognitive performance in elderly musicians and nonmusicians

    Get PDF
    Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection), and on simple (short-term memory) and more complex and higher-order (working memory [WM] and visuospatial abilities) cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups\u2019 short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation

    An extended case study on the phenomenology of sequence-space synesthesia

    Get PDF
    Investigation of synesthesia phenomenology in adults is needed to constrain accounts of developmental trajectories of this trait. We report an extended phenomenological investigation of sequence-space synesthesia in a single case (AB). We used the Elicitation Interview (EI) method to facilitate repeated exploration of AB's synesthetic experience. During an EI the subject's attention is selectively guided by the interviewer in order to reveal precise details about the experience. Detailed analysis of the resulting 9 h of interview transcripts provided a comprehensive description of AB's synesthetic experience, including several novel observations. For example, we describe a specific spatial reference frame (a "mental room") in which AB's concurrents occur, and which overlays his perception of the real world (the "physical room"). AB is able to switch his attention voluntarily between this mental room and the physical room. Exemplifying the EI method, some of our observations were previously unknown even to AB. For example, AB initially reported to experience concurrents following visual presentation, yet we determined that in the majority of cases the concurrent followed an internal verbalization of the inducer, indicating an auditory component to sequence-space synesthesia. This finding is congruent with typical rehearsal of inducer sequences during development, implicating cross-modal interactions between auditory and visual systems in the genesis of this synesthetic form. To our knowledge, this paper describes the first application of an EI to synesthesia, and the first systematic longitudinal investigation of the first-person experience of synesthesia since the re-emergence of interest in this topic in the 1980's. These descriptions move beyond rudimentary graphical or spatial representations of the synesthetic spatial form, thereby providing new targets for neurobehavioral analysis

    A virtual object-location task for children: Gender and videogame experience influence navigation; age impacts memory and completion time

    Get PDF
    The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5-12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120" stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children's videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    The impact of 3D virtual environments with different levels of realism on route learning: a focus on age-based differences

    Full text link
    With technological advancements, it has become notably easier to create virtual environments (VEs) depicting the real world with high fidelity and realism. These VEs offer some attractive use cases for navigation studies looking into spatial cognition. However, such photorealistic VEs, while attractive, may complicate the route learning process as they may overwhelm users with the amount of information they contain. Understanding how much and what kind of photorealistic information is relevant to people at which point on their route and while they are learning a route can help define how to design virtual environments that better support spatial learning. Among the users who may be overwhelmed by too much information, older adults represent a special interest group for two key reasons: 1) The number of people over 65 years old is expected to increase to 1.5 billion by 2050 (World Health Organization, 2011); 2) cognitive abilities decline as people age (Park et al., 2002). The ability to independently navigate in the real world is an important aspect of human well-being. This fact has many socio-economic implications, yet age-related cognitive decline creates difficulties for older people in learning their routes in unfamiliar environments, limiting their independence. This thesis takes a user-centered approach to the design of visualizations for assisting all people, and specifically older adults, in learning routes while navigating in a VE. Specifically, the objectives of this thesis are threefold, addressing the basic dimensions of: ❖ Visualization type as expressed by different levels of realism: Evaluate how much and what kind of photorealistic information should be depicted and where it should be represented within a VE in a navigational context. It proposes visualization design guidelines for the design of VEs that assist users in effectively encoding visuospatial information. ❖ Use context as expressed by route recall in short- and long-term: Identify the implications that different information types (visual, spatial, and visuospatial) have over short- and long-term route recall with the use of 3D VE designs varying in levels of realism. ❖ User characteristics as expressed by group differences related to aging, spatial abilities, and memory capacity: Better understand how visuospatial information is encoded and decoded by people in different age groups, and of different spatial and memory abilities, particularly while learning a route in 3D VE designs varying in levels of realism. In this project, the methodology used for investigating the topics outlined above was a set of controlled lab experiments nested within one. Within this experiment, participants’ recall accuracy for various visual, spatial, and visuospatial elements on the route was evaluated using three visualization types that varied in their amount of photorealism. These included an Abstract, a Realistic, and a Mixed VE (see Figure 2), for a number of route recall tasks relevant to navigation. The Mixed VE is termed “mixed” because it includes elements from both the Abstract and the Realistic VEs, balancing the amount of realism in a deliberate manner (elaborated in Section 3.5.2). This feature is developed within this thesis. The tested recall tasks were differentiated based on the type of information being assessed: visual, spatial, and visuospatial (elaborated in Section 3.6.1). These tasks were performed by the participants both immediately after experiencing a drive-through of a route in the three VEs and a week after that; thus, addressing short- and long-term memory, respectively. Participants were counterbalanced for their age, gender, and expertise while their spatial abilities and visuospatial memory capacity were controlled with standardized psychological tests. The results of the experiments highlight the importance of all three investigated dimensions for successful route learning with VEs. More specifically, statistically significant differences in participants’ recall accuracy were observed for: 1) the visualization type, highlighting the value of balancing the amount of photorealistic information presented in VEs while also demonstrating the positive and negative effects of abstraction and realism in VEs on route learning; 2) the recall type, highlighting nuances and peculiarities across the recall of visual, spatial, and visuospatial information in the short- and long-term; and, 3) the user characteristics, as expressed by age differences, but also by spatial abilities and visuospatial memory capacity, highlighting the importance of considering the user type, i.e., for whom the visualization is customized. The original and unique results identified from this work advance the knowledge in GIScience, particularly in geovisualization, from the perspective of the “cognitive design” of visualizations in two distinct ways: (i) understanding the effects that visual realism has—as presented in VEs—on route learning, specifically for people of different age groups and with different spatial abilities and memory capacity, and (ii) proposing empirically validated visualization design guidelines for the use of photorealism in VEs for efficient recall of visuospatial information during route learning, not only for shortterm but also for long-term recall in younger and older adults

    Human spatial navigation in the digital era: Effects of landmark depiction on mobile maps on navigators’ spatial learning and brain activity during assisted navigation

    Full text link
    Navigation was an essential survival skill for our ancestors and is still a fundamental activity in our everyday lives. To stay oriented and assist navigation, our ancestors had a long history of developing and employing physical maps that communicated an enormous amount of spatial and visual information about their surroundings. Today, in the digital era, we are increasingly turning to mobile navigation devices to ease daily navigation tasks, surrendering our spatial and navigational skills to the hand-held device. On the flip side, the conveniences of such devices lead us to pay less attention to our surroundings, make fewer spatial decisions, and remember less about the surroundings we have traversed. As navigational skills and spatial memory are related to adult neurogenesis, healthy aging, education, and survival, scientists and researchers from multidisciplinary fields have made calls to develop a new account of mobile navigation assistance to preserve human navigational abilities and spatial memory. Landmarks have been advocated for special attention in developing cognitively supportive navigation systems, as landmarks are widely accepted as key features to support spatial navigation and spatial learning of an environment. Turn-by-turn direction instructions without reference to surrounding landmarks, such as those provided by most existing navigation systems, can be one of the reasons for navigators’ spatial memory deterioration during assisted navigation. Despite the benefit of landmarks in navigation and spatial learning, long-standing literature on cognitive psychology has pointed out that individuals have only a limited cognitive capacity to process presented information for a task. When the learning items exceed learners’ capacity, the performance may reach a plateau or even drop. This leads to an unexamined yet important research question on how to visualize landmarks on a mobile map to optimize navigators’ cognitive resource exertion and thus optimize their spatial learning. To investigate this question, I leveraged neuropsychological and hypothesis-driven approaches and investigated whether and how different numbers of landmarks depicted on a mobile map affected navigators’ spatial learning, cognitive load, and visuospatial encoding. Specifically, I set out a navigation experiment in three virtual urban environments, in which participants were asked to follow a given route to a specific destination with the aid of a mobile map. Three different numbers of landmarks—3, 5, and 7—along the given route were selected based on cognitive capacity literature and presented to 48 participants during map-assisted navigation. Their brain activity was recorded both during the phase of map consultation and during that of active locomotion. After navigation in each virtual city, their spatial knowledge of the traversed routes was assessed. The statistical results revealed that spatial learning improved when a medium number of landmarks (i.e., five) was depicted on a mobile map compared to the lowest evaluated number (i.e., three) of landmarks, and there was no further improvement when the highest number (i.e., seven) of landmarks were provided on the mobile map. The neural correlates that were interpreted to reflect cognitive load during map consultation increased when participants were processing seven landmarks depicted on a mobile map compared to the other two landmark conditions; by contrast, the neural correlates that indicated visuospatial encoding increased with a higher number of presented landmarks. In line with the cognitive load changes during map consultation, cognitive load during active locomotion also increased when participants were in the seven-landmark condition, compared to the other two landmark conditions. This thesis provides an exemplary paradigm to investigate navigators’ behavior and cognitive processing during map-assisted navigation and to utilize neuropsychological approaches to solve cartographic design problems. The findings contribute to a better understanding of the effects of landmark depiction (3, 5, and 7 landmarks) on navigators’ spatial learning outcomes and their cognitive processing (cognitive load and visuospatial encoding) during map-assisted navigation. Of these insights, I conclude with two main takeaways for audiences including navigation researchers and navigation system designers. First, the thesis suggests a boundary effect of the proposed benefits of landmarks in spatial learning: providing landmarks on maps benefits users’ spatial learning only to a certain extent when the number of landmarks does not increase cognitive load. Medium number (i.e., 5) of landmarks seems to be the best option in the current experiment, as five landmarks facilitate spatial learning without taxing additional cognitive resources. The second takeaway is that the increased cognitive load during map use might also spill over into the locomotion phase through the environment; thus, the locomotion phase in the environment should also be carefully considered while designing a mobile map to support navigation and environmental learning

    Tracking the mind's image in the brain : combining evidence from fMRI and rTMS

    Get PDF
    Die Dissertation kombiniert die Methode der funktionellen Magnetresonanztomographie (fMRT) zur genauen räumlichen Lokalisation aufgabenkorrelierter parietaler Aktivierungen mit Transkranieller Magnetstimulation (TMS) zur systematischen Untersuchung der funktionellen Relevanz dieser Aktivierungen für die tatsächliche Leistungsfähigkeit. Die experimentelle Kombination beider Methoden ermöglichte die gezielte Stimulation der im tMRT identifizierten, mit visuospatialen Fähigkeiten assoziierten Hirnareale. Durch die systematische Auswertung der TMS-induzierten visuospatialen Leistungsveränderungen wurde die spezifische funktionelle Bedeutung dieser Hirnareale für visuospatiale Leistungen experimentell untersucht. Der zugrunde gelegte Versuchsplan umfasste sowohl visuospatiale Leistungen auf der Grundlage visuell dargebotener als auch mental vorgestellter Aufgaben. Dies ermöglichte die systematische Untersuchung, ob und inwieweit mentale visuospatiale Informationsverarbeitung die gleichen oder ähnliche Aktivierungsmuster im fMRT aufweist wie visuospatiale Verarbeitung visuell dargebotener Stimuli, und ob sich diese Aktivierungsmuster vorgestellter Stimuli unter dem Einfluss von rTMS in gleicher Weise als funktionell relevant erweisen. Aufgrund der separaten unilateralen Stimulation beider Hemisphären konnten darüber hinaus die unterschiedlichen behavioralen Auswirkungen einer Aktivierungsunterdrückung des linken und rechten Parietalkortex systematisch untersucht werden. Obwohl die Ausführung visuospatialer Aufgaben, sowohl auf der Grundlage visuell dargebotener als auch mental vorgestellter Stimuli, im fMRT mit einer bilateralen Aktivierung im Parietalkortex korrelierte, führte lediglich die TMS-induzierte temporäre Unterbrechung der neuronalen Aktivierung im rechten Parietalkortex zu einer signifikanten Verschlechterung in der Leistungsfähigkeit der damit assoziierten visuospatialen Aufgaben. Auf der Grundlage dieser Ergebnisse wurde ein modulares Modell der visuospatialen Imagination formuliert, in welchem den aufgabenkorrelierten bilateralen Aktivierungen aufgrund ihrer raum-zeitlichen Separierbarkeit unterschiedliche mentale Prozesse und aufgrund der mit TMS aufgezeigten funktionellen hemisphärischen Asymmetrie parietaler Aktivierung für visuospatiale Informationsverarbeitung unterschiedliche Kompensationsmechanismen zugeordnet wurden
    corecore