446 research outputs found

    Visually-Guided Manipulation Techniques for Robotic Autonomous Underwater Panel Interventions

    Get PDF
    The long term of this ongoing research has to do with increasing the autonomy levels for underwater intervention missions. Bearing in mind that the speci c mission to face has been the intervention on a panel, in this paper some results in di erent development stages are presented by using the real mechatronics and the panel mockup. Furthermore, some details are highlighted describing two methodologies implemented for the required visually-guided manipulation algorithms, and also a roadmap explaining the di erent testbeds used for experimental validation, in increasing complexity order, are presented. It is worth mentioning that the aforementioned results would be impossible without previous generated know-how for both, the complete developed mechatronics for the autonomous underwater vehicle for intervention, and the required 3D simulation tool. In summary, thanks to the implemented approach, the intervention system is able to control the way in which the gripper approximates and manipulates the two panel devices (i.e. a valve and a connector) in autonomous manner and, results in di erent scenarios demonstrate the reliability and feasibility of this autonomous intervention system in water tank and pool conditions.This work was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project) and DPI2014-57746-C3 (MERBOTS Project), by Foundation Caixa Castell o-Bancaixa and Universitat Jaume I grant PID2010-12, by Universitat Jaume I PhD grants PREDOC/2012/47 and PREDOC/2013/46, and by Generalitat Valenciana PhD grant ACIF/2014/298. We would like also to acknowledge the support of our partners inside the Spanish Coordinated Projects TRITON and MERBOTS: Universitat de les Illes Balears, UIB (subprojects VISUAL2 and SUPERION) and Universitat de Girona, UdG (subprojects COMAROB and ARCHROV)

    Visibility in underwater robotics: Benchmarking and single image dehazing

    Get PDF
    Dealing with underwater visibility is one of the most important challenges in autonomous underwater robotics. The light transmission in the water medium degrades images making the interpretation of the scene difficult and consequently compromising the whole intervention. This thesis contributes by analysing the impact of the underwater image degradation in commonly used vision algorithms through benchmarking. An online framework for underwater research that makes possible to analyse results under different conditions is presented. Finally, motivated by the results of experimentation with the developed framework, a deep learning solution is proposed capable of dehazing a degraded image in real time restoring the original colors of the image.Una de las dificultades más grandes de la robótica autónoma submarina es lidiar con la falta de visibilidad en imágenes submarinas. La transmisión de la luz en el agua degrada las imágenes dificultando el reconocimiento de objetos y en consecuencia la intervención. Ésta tesis se centra en el análisis del impacto de la degradación de las imágenes submarinas en algoritmos de visión a través de benchmarking, desarrollando un entorno de trabajo en la nube que permite analizar los resultados bajo diferentes condiciones. Teniendo en cuenta los resultados obtenidos con este entorno, se proponen métodos basados en técnicas de aprendizaje profundo para mitigar el impacto de la degradación de las imágenes en tiempo real introduciendo un paso previo que permita recuperar los colores originales

    Cooperative and Multimodal Capabilities Enhancement in the CERNTAURO Human–Robot Interface for Hazardous and Underwater Scenarios

    Get PDF
    The use of remote robotic systems for inspection and maintenance in hazardous environments is a priority for all tasks potentially dangerous for humans. However, currently available robotic systems lack that level of usability which would allow inexperienced operators to accomplish complex tasks. Moreover, the task’s complexity increases drastically when a single operator is required to control multiple remote agents (for example, when picking up and transporting big objects). In this paper, a system allowing an operator to prepare and configure cooperative behaviours for multiple remote agents is presented. The system is part of a human–robot interface that was designed at CERN, the European Center for Nuclear Research, to perform remote interventions in its particle accelerator complex, as part of the CERNTAURO project. In this paper, the modalities of interaction with the remote robots are presented in detail. The multimodal user interface enables the user to activate assisted cooperative behaviours according to a mission plan. The multi-robot interface has been validated at CERN in its Large Hadron Collider (LHC) mockup using a team of two mobile robotic platforms, each one equipped with a robotic manipulator. Moreover, great similarities were identified between the CERNTAURO and the TWINBOT projects, which aim to create usable robotic systems for underwater manipulations. Therefore, the cooperative behaviours were validated within a multi-robot pipe transport scenario in a simulated underwater environment, experimenting more advanced vision techniques. The cooperative teleoperation can be coupled with additional assisted tools such as vision-based tracking and grasping determination of metallic objects, and communication protocols design. The results show that the cooperative behaviours enable a single user to face a robotic intervention with more than one robot in a safer way

    Recent Progress in the RAUVI Project: A Reconfigurable Autonomous Underwater Vehicle for Intervention

    Get PDF
    Starting in January 2009, the RAUVI project is a three years coordinated research action funded by the Spanish Ministry of Research and Innovation. This paper shows the research evolution during the first half of RAUVI’s live, bearing in mind that the long term objective is to design and develop an underwater autonomous robot able to perceive the environment and, by means of a specific hand-arm system, perform autonomously simple intervention tasks in shallow waters.This research was partly supported by the European Commission’s Seventh Framework Programme FP7/2007- 2013 under grant agreement 248497 (TRIDENT Project), by Spanish Ministry of Research and Innovation DPI2008-06548- C03 (RAUVI Project), and by Fundació Caixa Castelló- Bancaixa P1-1B2009-50

    Towards automated sample collection and return in extreme underwater environments

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Billings, G., Walter, M., Pizarro, O., Johnson-Roberson, M., & Camilli, R. Towards automated sample collection and return in extreme underwater environments. Journal of Field Robotics, 2(1), (2022): 1351–1385, https://doi.org/10.55417/fr.2022045.In this report, we present the system design, operational strategy, and results of coordinated multivehicle field demonstrations of autonomous marine robotic technologies in search-for-life missions within the Pacific shelf margin of Costa Rica and the Santorini-Kolumbo caldera complex, which serve as analogs to environments that may exist in oceans beyond Earth. This report focuses on the automation of remotely operated vehicle (ROV) manipulator operations for targeted biological sample-collection-and-return from the seafloor. In the context of future extraterrestrial exploration missions to ocean worlds, an ROV is an analog to a planetary lander, which must be capable of high-level autonomy. Our field trials involve two underwater vehicles, the SuBastian ROV and the Nereid Under Ice (NUI) hybrid ROV for mixed initiative (i.e., teleoperated or autonomous) missions, both equipped seven-degrees-of-freedom hydraulic manipulators. We describe an adaptable, hardware-independent computer vision architecture that enables high-level automated manipulation. The vision system provides a three-dimensional understanding of the workspace to inform manipulator motion planning in complex unstructured environments. We demonstrate the effectiveness of the vision system and control framework through field trials in increasingly challenging environments, including the automated collection and return of biological samples from within the active undersea volcano Kolumbo. Based on our experiences in the field, we discuss the performance of our system and identify promising directions for future research.This work was funded under a NASA PSTAR grant, number NNX16AL08G, and by the National Science Foundation under grants IIS-1830660 and IIS-1830500. The authors would like to thank the Costa Rican Ministry of Environment and Energy and National System of Conservation Areas for permitting research operations at the Costa Rican shelf margin, and the Schmidt Ocean Institute (including the captain and crew of the R/V Falkor and ROV SuBastian) for their generous support and making the FK181210 expedition safe and highly successful. Additionally, the authors would like to thank the Greek Ministry of Foreign Affairs for permitting the 2019 Kolumbo Expedition to the Kolumbo and Santorini calderas, as well as Prof. Evi Nomikou and Dr. Aggelos Mallios for their expert guidance and tireless contributions to the expedition

    Design and evaluation of a natural interface for remote operation of underwater roter

    Get PDF
    Nowadays, an increasing need of intervention robotic systems can be observed in all kind of hazardous environments. In all these intervention systems, the human expert continues playing a central role from the decision making point of view. For instance, in underwater domains, when manipulation capabilities are required, only Remote Operated Vehicles, commercially available, can be used, normally using master-slave architectures and relaying all the responsibility in the pilot. Thus, the role played by human- machine interfaces represents a crucial point in current intervention systems. This paper presents a User Interface Abstraction Layer and introduces a new procedure to control an underwater robot vehicle by using a new intuitive and immersive interface, which will show to the user only the most relevant information about the current mission. Finally, some experiments have been carried out to compare a traditional setup and the new procedure, demonstrating reliability and feasibility of our approach.This research was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project)

    A natural interface for remote operation of underwater robots

    Get PDF
    Nowadays, an increasing need of intervention robotic systems can be observed in all kind of hazardous environments. In all these intervention systems, the human expert continues playing a central role from the decision-making point of view. For instance, in underwater domains, when manipulation capabilities are required, only Remote Operated Vehicles, commercially available, can be used, normally using master-slave architectures and relaying all the responsibility in the pilot. Thus, the role played by human- machine interfaces represents a crucial point in current intervention systems. This paper presents a User Interface Abstraction Layer and introduces a new procedure to control an underwater robot vehicle by using a new intuitive and immersive interface, which will show to the user only the most relevant information about the current mission. We conducted an experiment and found that the highest user preference and performance was in the immersive condition with joystick navigation.This research was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project)

    TWINBOT: Autonomous Underwater Cooperative Transportation

    Get PDF
    Underwater Inspection, Maintenance, and Repair operations are nowadays performed using Remotely Operated Vehicles (ROV) deployed from dynamic-positioning vessels, having high daily operational costs. During the last twenty years, the research community has been making an effort to design new Intervention Autonomous Underwater Vehicles (I-AUV), which could, in the near future, replace the ROVs, significantly decreasing these costs. Until now, the experimental work using I-AUVs has been limited to a few single-vehicle interventions, including object search and recovery, valve turning, and hot stab operations. More complex scenarios usually require the cooperation of multiple agents, i.e., the transportation of large and heavy objects. Moreover, using small, autonomous vehicles requires consideration of their limited load capacity and limited manipulation force/torque capabilities. Following the idea of multi-agent systems, in this paper we propose a possible solution: using a group of cooperating I-AUVs, thus sharing the load and optimizing the stress exerted on the manipulators. Specifically, we tackle the problem of transporting a long pipe. The presented ideas are based on a decentralized Task-Priority kinematic control algorithm adapted for the highly limited communication bandwidth available underwater. The aforementioned pipe is transported following a sequence of poses. A path-following algorithm computes the desired velocities for the robots’ end-effectors, and the on-board controllers ensure tracking of these setpoints, taking into account the geometry of the pipe and the vehicles’ limitations. The utilized algorithms and their practical implementation are discussed in detail and validated through extensive simulations and experimental trials performed in a test tank using two 8 DOF I-AUV

    Minimally Invasive Expeditionary Surgical Care Using Human-Inspired Robots

    Get PDF
    This technical report serves as an updated collection of subject matter experts on surgical care using human-inspired robotics for human exploration. It is a summary of the Blue Sky Meeting, organized by the Florida Institute for Human and Machine Cognition (IHMC), Pensacola, Florida, and held on October 2-3, 2018. It contains an executive summary, the final report, all of the presentation materials, and an updated reference list
    corecore