5,677 research outputs found

    Visually-Aware Fashion Recommendation and Design with Generative Image Models

    Full text link
    Building effective recommender systems for domains like fashion is challenging due to the high level of subjectivity and the semantic complexity of the features involved (i.e., fashion styles). Recent work has shown that approaches to `visual' recommendation (e.g.~clothing, art, etc.) can be made more accurate by incorporating visual signals directly into the recommendation objective, using `off-the-shelf' feature representations derived from deep networks. Here, we seek to extend this contribution by showing that recommendation performance can be significantly improved by learning `fashion aware' image representations directly, i.e., by training the image representation (from the pixel level) and the recommender system jointly; this contribution is related to recent work using Siamese CNNs, though we are able to show improvements over state-of-the-art recommendation techniques such as BPR and variants that make use of pre-trained visual features. Furthermore, we show that our model can be used \emph{generatively}, i.e., given a user and a product category, we can generate new images (i.e., clothing items) that are most consistent with their personal taste. This represents a first step towards building systems that go beyond recommending existing items from a product corpus, but which can be used to suggest styles and aid the design of new products.Comment: 10 pages, 6 figures. Accepted by ICDM'17 as a long pape

    Complete the Look: Scene-based Complementary Product Recommendation

    Full text link
    Modeling fashion compatibility is challenging due to its complexity and subjectivity. Existing work focuses on predicting compatibility between product images (e.g. an image containing a t-shirt and an image containing a pair of jeans). However, these approaches ignore real-world 'scene' images (e.g. selfies); such images are hard to deal with due to their complexity, clutter, variations in lighting and pose (etc.) but on the other hand could potentially provide key context (e.g. the user's body type, or the season) for making more accurate recommendations. In this work, we propose a new task called 'Complete the Look', which seeks to recommend visually compatible products based on scene images. We design an approach to extract training data for this task, and propose a novel way to learn the scene-product compatibility from fashion or interior design images. Our approach measures compatibility both globally and locally via CNNs and attention mechanisms. Extensive experiments show that our method achieves significant performance gains over alternative systems. Human evaluation and qualitative analysis are also conducted to further understand model behavior. We hope this work could lead to useful applications which link large corpora of real-world scenes with shoppable products.Comment: Accepted to CVPR'1

    Explainable Fashion Recommendation: A Semantic Attribute Region Guided Approach

    Full text link
    In fashion recommender systems, each product usually consists of multiple semantic attributes (e.g., sleeves, collar, etc). When making cloth decisions, people usually show preferences for different semantic attributes (e.g., the clothes with v-neck collar). Nevertheless, most previous fashion recommendation models comprehend the clothing images with a global content representation and lack detailed understanding of users' semantic preferences, which usually leads to inferior recommendation performance. To bridge this gap, we propose a novel Semantic Attribute Explainable Recommender System (SAERS). Specifically, we first introduce a fine-grained interpretable semantic space. We then develop a Semantic Extraction Network (SEN) and Fine-grained Preferences Attention (FPA) module to project users and items into this space, respectively. With SAERS, we are capable of not only providing cloth recommendations for users, but also explaining the reason why we recommend the cloth through intuitive visual attribute semantic highlights in a personalized manner. Extensive experiments conducted on real-world datasets clearly demonstrate the effectiveness of our approach compared with the state-of-the-art methods.Comment: Accepted to IJCAI201

    POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion

    Full text link
    Increasing demand for fashion recommendation raises a lot of challenges for online shopping platforms and fashion communities. In particular, there exist two requirements for fashion outfit recommendation: the Compatibility of the generated fashion outfits, and the Personalization in the recommendation process. In this paper, we demonstrate these two requirements can be satisfied via building a bridge between outfit generation and recommendation. Through large data analysis, we observe that people have similar tastes in individual items and outfits. Therefore, we propose a Personalized Outfit Generation (POG) model, which connects user preferences regarding individual items and outfits with Transformer architecture. Extensive offline and online experiments provide strong quantitative evidence that our method outperforms alternative methods regarding both compatibility and personalization metrics. Furthermore, we deploy POG on a platform named Dida in Alibaba to generate personalized outfits for the users of the online application iFashion. This work represents a first step towards an industrial-scale fashion outfit generation and recommendation solution, which goes beyond generating outfits based on explicit queries, or merely recommending from existing outfit pools. As part of this work, we release a large-scale dataset consisting of 1.01 million outfits with rich context information, and 0.28 billion user click actions from 3.57 million users. To the best of our knowledge, this dataset is the largest, publicly available, fashion related dataset, and the first to provide user behaviors relating to both outfits and fashion items.Comment: Till appear in KDD 201

    Compatible and Diverse Fashion Image Inpainting

    Full text link
    Visual compatibility is critical for fashion analysis, yet is missing in existing fashion image synthesis systems. In this paper, we propose to explicitly model visual compatibility through fashion image inpainting. To this end, we present Fashion Inpainting Networks (FiNet), a two-stage image-to-image generation framework that is able to perform compatible and diverse inpainting. Disentangling the generation of shape and appearance to ensure photorealistic results, our framework consists of a shape generation network and an appearance generation network. More importantly, for each generation network, we introduce two encoders interacting with one another to learn latent code in a shared compatibility space. The latent representations are jointly optimized with the corresponding generation network to condition the synthesis process, encouraging a diverse set of generated results that are visually compatible with existing fashion garments. In addition, our framework is readily extended to clothing reconstruction and fashion transfer, with impressive results. Extensive experiments with comparisons with state-of-the-art approaches on fashion synthesis task quantitatively and qualitatively demonstrate the effectiveness of our method

    Garment Design with Generative Adversarial Networks

    Full text link
    The designers' tendency to adhere to a specific mental set and heavy emotional investment in their initial ideas often hinder their ability to innovate during the design thinking and ideation process. In the fashion industry, in particular, the growing diversity of customers' needs, the intense global competition, and the shrinking time-to-market (a.k.a., "fast fashion") further exacerbate this challenge for designers. Recent advances in deep generative models have created new possibilities to overcome the cognitive obstacles of designers through automated generation and/or editing of design concepts. This paper explores the capabilities of generative adversarial networks (GAN) for automated attribute-level editing of design concepts. Specifically, attribute GAN (AttGAN)---a generative model proven successful for attribute editing of human faces---is utilized for automated editing of the visual attributes of garments and tested on a large fashion dataset. The experiments support the hypothesized potentials of GAN for attribute-level editing of design concepts, and underscore several key limitations and research questions to be addressed in future work.Comment: AdvML 2020, KDD worksho

    A survey on Adversarial Recommender Systems: from Attack/Defense strategies to Generative Adversarial Networks

    Full text link
    Latent-factor models (LFM) based on collaborative filtering (CF), such as matrix factorization (MF) and deep CF methods, are widely used in modern recommender systems (RS) due to their excellent performance and recommendation accuracy. However, success has been accompanied with a major new arising challenge: many applications of machine learning (ML) are adversarial in nature. In recent years, it has been shown that these methods are vulnerable to adversarial examples, i.e., subtle but non-random perturbations designed to force recommendation models to produce erroneous outputs. The goal of this survey is two-fold: (i) to present recent advances on adversarial machine learning (AML) for the security of RS (i.e., attacking and defense recommendation models), (ii) to show another successful application of AML in generative adversarial networks (GANs) for generative applications, thanks to their ability for learning (high-dimensional) data distributions. In this survey, we provide an exhaustive literature review of 74 articles published in major RS and ML journals and conferences. This review serves as a reference for the RS community, working on the security of RS or on generative models using GANs to improve their quality.Comment: 37 pages, submitted to journa

    Adversarial Recommendation: Attack of the Learned Fake Users

    Full text link
    Can machine learning models for recommendation be easily fooled? While the question has been answered for hand-engineered fake user profiles, it has not been explored for machine learned adversarial attacks. This paper attempts to close this gap. We propose a framework for generating fake user profiles which, when incorporated in the training of a recommendation system, can achieve an adversarial intent, while remaining indistinguishable from real user profiles. We formulate this procedure as a repeated general-sum game between two players: an oblivious recommendation system RR and an adversarial fake user generator AA with two goals: (G1) the rating distribution of the fake users needs to be close to the real users, and (G2) some objective fAf_A encoding the attack intent, such as targeting the top-K recommendation quality of RR for a subset of users, needs to be optimized. We propose a learning framework to achieve both goals, and offer extensive experiments considering multiple types of attacks highlighting the vulnerability of recommendation systems

    CuratorNet: Visually-aware Recommendation of Art Images

    Full text link
    Although there are several visually-aware recommendation models in domains like fashion or even movies, the art domain lacks thesame level of research attention, despite the recent growth of the online artwork market. To reduce this gap, in this article we introduceCuratorNet, a neural network architecture for visually-aware recommendation of art images. CuratorNet is designed at the core withthe goal of maximizing generalization: the network has a fixed set of parameters that only need to be trained once, and thereafter themodel is able to generalize to new users or items never seen before, without further training. This is achieved by leveraging visualcontent: items are mapped to item vectors through visual embeddings, and users are mapped to user vectors by aggregating the visualcontent of items they have consumed. Besides the model architecture, we also introduce novel triplet sampling strategies to build atraining set for rank learning in the art domain, resulting in more effective learning than naive random sampling. With an evaluationover a real-world dataset of physical paintings, we show that CuratorNet achieves the best performance among several baselines,including the state-of-the-art model VBPR. CuratorNet is motivated and evaluated in the art domain, but its architecture and trainingscheme could be adapted to recommend images in other area

    Fashion++: Minimal Edits for Outfit Improvement

    Full text link
    Given an outfit, what small changes would most improve its fashionability? This question presents an intriguing new vision challenge. We introduce Fashion++, an approach that proposes minimal adjustments to a full-body clothing outfit that will have maximal impact on its fashionability. Our model consists of a deep image generation neural network that learns to synthesize clothing conditioned on learned per-garment encodings. The latent encodings are explicitly factorized according to shape and texture, thereby allowing direct edits for both fit/presentation and color/patterns/material, respectively. We show how to bootstrap Web photos to automatically train a fashionability model, and develop an activation maximization-style approach to transform the input image into its more fashionable self. The edits suggested range from swapping in a new garment to tweaking its color, how it is worn (e.g., rolling up sleeves), or its fit (e.g., making pants baggier). Experiments demonstrate that Fashion++ provides successful edits, both according to automated metrics and human opinion. Project page is at http://vision.cs.utexas.edu/projects/FashionPlus.Comment: accepted to ICCV 201
    corecore