14,189 research outputs found

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    XLIndy: interactive recognition and information extraction in spreadsheets

    Get PDF
    Over the years, spreadsheets have established their presence in many domains, including business, government, and science. However, challenges arise due to spreadsheets being partially-structured and carrying implicit (visual and textual) information. This translates into a bottleneck, when it comes to automatic analysis and extraction of information. Therefore, we present XLIndy, a Microsoft Excel add-in with a machine learning back-end, written in Python. It showcases our novel methods for layout inference and table recognition in spreadsheets. For a selected task and method, users can visually inspect the results, change configurations, and compare different runs. This enables iterative fine-tuning. Additionally, users can manually revise the predicted layout and tables, and subsequently save them as annotations. The latter is used to measure performance and (re-)train classifiers. Finally, data in the recognized tables can be extracted for further processing. XLIndy supports several standard formats, such as CSV and JSON.Peer ReviewedPostprint (author's final draft

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made

    Visual interactive grouping:follow the leader!

    Get PDF

    Post-processing of association rules.

    Get PDF
    In this paper, we situate and motivate the need for a post-processing phase to the association rule mining algorithm when plugged into the knowledge discovery in databases process. Major research effort has already been devoted to optimising the initially proposed mining algorithms. When it comes to effectively extrapolating the most interesting knowledge nuggets from the standard output of these algorithms, one is faced with an extreme challenge, since it is not uncommon to be confronted with a vast amount of association rules after running the algorithms. The sheer multitude of generated rules often clouds the perception of the interpreters. Rightful assessment of the usefulness of the generated output introduces the need to effectively deal with different forms of data redundancy and data being plainly uninteresting. In order to do so, we will give a tentative overview of some of the main post-processing tasks, taking into account the efforts that have already been reported in the literature.

    Weka: A machine learning workbench for data mining

    Get PDF
    The Weka workbench is an organized collection of state-of-the-art machine learning algorithms and data preprocessing tools. The basic way of interacting with these methods is by invoking them from the command line. However, convenient interactive graphical user interfaces are provided for data exploration, for setting up large-scale experiments on distributed computing platforms, and for designing configurations for streamed data processing. These interfaces constitute an advanced environment for experimental data mining. The system is written in Java and distributed under the terms of the GNU General Public License
    corecore