270 research outputs found

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Uncertainty-aware Visualization in Medical Imaging - A Survey

    Get PDF
    Medical imaging (image acquisition, image transformation, and image visualization) is a standard tool for clinicians in order to make diagnoses, plan surgeries, or educate students. Each of these steps is affected by uncertainty, which can highly influence the decision-making process of clinicians. Visualization can help in understanding and communicating these uncertainties. In this manuscript, we aim to summarize the current state-of-the-art in uncertainty-aware visualization in medical imaging. Our report is based on the steps involved in medical imaging as well as its applications. Requirements are formulated to examine the considered approaches. In addition, this manuscript shows which approaches can be combined to form uncertainty-aware medical imaging pipelines. Based on our analysis, we are able to point to open problems in uncertainty-aware medical imaging

    Master of Science

    Get PDF
    thesisIt is common to extract isosurfaces from simulation eld data to visualize and gain understanding of the underlying physical phenomenon being simulated. As the input parameters of the simulation change, the resulting isosurface varies, and there has been increased interest in quantifying and visualization of these variations as part of the larger interest in uncertainty quantification. In this thesis, we propose an analysis and visualization pipeline for examining the intrinsic variation in isosurfaces caused by simulation parameter perturbation. Drawing inspiration from the shape modeling community, we incorporate the use of heat-kernel signatures (HKS) with a simple nite-difference approach for quantifying the degree to which a region (or even a point) on an isosurface has undergone intrinsic change. Coupled with a clustering technique and the use of color maps, our pipeline allows the user to select the level of fidelity with which they wish to evaluate and visualize the amount of intrinsic change. The pipeline is described with a simple example to walk the reader through the different steps, and experimental validation of parameter choices in the pipeline is provided to justify our design. Then we present canonical and simulation examples to demonstrate the pipeline's use in different applications

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Visual analysis of uncertainties in ocean forecasts for planning and operation of off-shore structures

    Get PDF
    pre-printWe present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations used in ocean forecasting, i.e, simulations of sea surface elevation. Our system enables the interactive planning of both the placement and operation of off-shore structures. We illustrate this using a real-world simulation of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by strong loop currents. The oil and gas industry therefore relies on accurate ocean forecasting systems for planning their operations. Nowadays, these forecasts are based on multiple spatio-temporal simulations resulting in multidimensional, multivariate and multivalued data, so-called ensemble data. Changes in sea surface elevation are a good indicator for the movement of loop current eddies, and our visualization approach enables their interactive exploration and analysis. We enable analysis of the spatial domain, for planning the placement of structures, as well as detailed exploration of the temporal evolution at any chosen position, for the prediction of critical ocean states that require the shutdown of rig operations

    Doctor of Philosophy

    Get PDF
    dissertationConfocal microscopy has become a popular imaging technique in biology research in recent years. It is often used to study three-dimensional (3D) structures of biological samples. Confocal data are commonly multichannel, with each channel resulting from a different fluorescent staining. This technique also results in finely detailed structures in 3D, such as neuron fibers. Despite the plethora of volume rendering techniques that have been available for many years, there is a demand from biologists for a flexible tool that allows interactive visualization and analysis of multichannel confocal data. Together with biologists, we have designed and developed FluoRender. It incorporates volume rendering techniques such as a two-dimensional (2D) transfer function and multichannel intermixing. Rendering results can be enhanced through tone-mappings and overlays. To facilitate analyses of confocal data, FluoRender provides interactive operations for extracting complex structures. Furthermore, we developed the Synthetic Brainbow technique, which takes advantage of the asynchronous behavior in Graphics Processing Unit (GPU) framebuffer loops and generates random colorizations for different structures in single-channel confocal data. The results from our Synthetic Brainbows, when applied to a sequence of developing cells, can then be used for tracking the movements of these cells. Finally, we present an application of FluoRender in the workflow of constructing anatomical atlases

    Visualization for the Physical Sciences

    Get PDF

    Scalable 3D Surface Reconstruction by Local Stochastic Fusion of Disparity Maps

    Get PDF
    Digital three-dimensional (3D) models are of significant interest to many application fields, such as medicine, engineering, simulation, and entertainment. Manual creation of 3D models is extremely time-consuming and data acquisition, e.g., through laser sensors, is expensive. In contrast, images captured by cameras mean cheap acquisition and high availability. Significant progress in the field of computer vision already allows for automatic 3D reconstruction using images. Nevertheless, many problems still exist, particularly for big sets of large images. In addition to the complex formulation necessary to solve an ill-posed problem, one has to manage extremely large amounts of data. This thesis targets 3D surface reconstruction using image sets, especially for large-scale, but also for high-accuracy applications. To this end, a processing chain for dense scalable 3D surface reconstruction using large image sets is defined consisting of image registration, disparity estimation, disparity map fusion, and triangulation of point clouds. The main focus of this thesis lies on the fusion and filtering of disparity maps, obtained by Semi-Global Matching, to create accurate 3D point clouds. For unlimited scalability, a Divide and Conquer method is presented that allows for parallel processing of subspaces of the 3D reconstruction space. The method for fusing disparity maps employs local optimization of spatial data. By this means, it avoids complex fusion strategies when merging subspaces. Although the focus is on scalable reconstruction, a high surface quality is obtained by several extensions to state-of-the-art local optimization methods. To this end, the seminal local volumetric optimization method by Curless and Levoy (1996) is interpreted from a probabilistic perspective. From this perspective, the method is extended through Bayesian fusion of spatial measurements with Gaussian uncertainty. Additionally to the generation of an optimal surface, this probabilistic perspective allows for the estimation of surface probabilities. They are used for filtering outliers in 3D space by means of geometric consistency checks. A further improvement of the quality is obtained based on the analysis of the disparity uncertainty. To this end, Total Variation (TV)-based feature classes are defined that are highly correlated with the disparity uncertainty. The correlation function is learned from ground-truth data by means of an Expectation Maximization (EM) approach. Because of the consideration of a statistically estimated disparity error in a probabilistic framework for fusion of spatial data, this can be regarded as a stochastic fusion of disparity maps. In addition, the influence of image registration and polygonization for volumetric fusion is analyzed and used to extend the method. Finally, a multi-resolution strategy is presented that allows for the generation of surfaces from spatial data with a largely varying quality. This method extends state-of-the-art methods by considering the spatial uncertainty of 3D points from stereo data. The evaluation of several well-known and novel datasets demonstrates the potential of the scalable stochastic fusion method. The strength and the weakness of the method are discussed and direction for future research is given.Digitale dreidimensionale (3D) Modelle sind in vielen Anwendungsfeldern, wie Medizin, Ingenieurswesen, Simulation und Unterhaltung von signifikantem Interesse. Eine manuelle Erstellung von 3D-Modellen ist äußerst zeitaufwendig und die Erfassung der Daten, z.B. durch Lasersensoren, ist teuer. Kamerabilder ermöglichen hingegen preiswerte Aufnahmen und sind gut verfügbar. Der rasante Fortschritt im Forschungsfeld Computer Vision ermöglicht bereits eine automatische 3D-Rekonstruktion aus Bilddaten. Dennoch besteht weiterhin eine Vielzahl von Problemen, insbesondere bei der Verarbeitung von großen Mengen hochauflösender Bilder. Zusätzlich zur komplexen Formulierung, die zur Lösung eines schlecht gestellten Problems notwendig ist, besteht die Herausforderung darin, äußerst große Datenmengen zu verwalten. Diese Arbeit befasst sich mit dem Problem der 3D-Oberflächenrekonstruktion aus Bilddaten, insbesondere für sehr große Modelle, aber auch Anwendungen mit hohem Genauigkeitsanforderungen. Zu diesem Zweck wird eine Prozesskette zur dichten skalierbaren 3D-Oberflächenrekonstruktion für große Bildmengen definiert, bestehend aus Bildregistrierung, Disparitätsschätzung, Fusion von Disparitätskarten und Triangulation von Punktwolken. Der Schwerpunkt dieser Arbeit liegt auf der Fusion und Filterung von durch Semi-Global Matching generierten Disparitätskarten zur Bestimmung von genauen 3D-Punktwolken. Für eine unbegrenzte Skalierbarkeit wird eine Divide and Conquer Methode vorgestellt, welche eine parallele Verarbeitung von Teilräumen des 3D-Rekonstruktionsraums ermöglicht. Die Methode zur Fusion von Disparitätskarten basiert auf lokaler Optimierung von 3D Daten. Damit kann eine komplizierte Fusionsstrategie für die Unterräume vermieden werden. Obwohl der Fokus auf der skalierbaren Rekonstruktion liegt, wird eine hohe Oberflächenqualität durch mehrere Erweiterungen von lokalen Optimierungsmodellen erzielt, die dem Stand der Forschung entsprechen. Dazu wird die wegweisende lokale volumetrische Optimierungsmethode von Curless and Levoy (1996) aus einer probabilistischen Perspektive interpretiert. Aus dieser Perspektive wird die Methode durch eine Bayes Fusion von räumlichen Messungen mit Gaußscher Unsicherheit erweitert. Zusätzlich zur Bestimmung einer optimalen Oberfläche ermöglicht diese probabilistische Fusion die Extraktion von Oberflächenwahrscheinlichkeiten. Diese werden wiederum zur Filterung von Ausreißern mittels geometrischer Konsistenzprüfungen im 3D-Raum verwendet. Eine weitere Verbesserung der Qualität wird basierend auf der Analyse der Disparitätsunsicherheit erzielt. Dazu werden Gesamtvariation-basierte Merkmalsklassen definiert, welche stark mit der Disparitätsunsicherheit korrelieren. Die Korrelationsfunktion wird aus ground-truth Daten mittels eines Expectation Maximization (EM) Ansatzes gelernt. Aufgrund der Berücksichtigung eines statistisch geschätzten Disparitätsfehlers in einem probabilistischem Grundgerüst für die Fusion von räumlichen Daten, kann dies als eine stochastische Fusion von Disparitätskarten betrachtet werden. Außerdem wird der Einfluss der Bildregistrierung und Polygonisierung auf die volumetrische Fusion analysiert und verwendet, um die Methode zu erweitern. Schließlich wird eine Multi-Resolution Strategie präsentiert, welche die Generierung von Oberflächen aus räumlichen Daten mit unterschiedlichster Qualität ermöglicht. Diese Methode erweitert Methoden, die den Stand der Forschung darstellen, durch die Berücksichtigung der räumlichen Unsicherheit von 3D-Punkten aus Stereo Daten. Die Evaluierung von mehreren bekannten und neuen Datensätzen zeigt das Potential der skalierbaren stochastischen Fusionsmethode auf. Stärken und Schwächen der Methode werden diskutiert und es wird eine Empfehlung für zukünftige Forschung gegeben
    corecore