24,574 research outputs found

    Visualizing the dynamics of London's bicycle hire scheme

    Get PDF
    Visualizing flows between origins and destinations can be straightforward when dealing with small numbers of journeys or simple geographies. Representing flows as lines embedded in geographic space has commonly been used to map transport flows, especially when geographic patterns are important as they are when characterising cities or managing transportation. However, for larger numbers of flows, this approach requires careful design to avoid problems of occlusion, salience bias and information overload. Driven by the requirements identified by users and managers of the London Bicycle Hire scheme we present three methods of representation of bicycle hire use and travel patterns. Flow maps with curved flow symbols are used to show overviews in flow structures. Gridded views of docking station location that preserve geographic relationships are used to explore docking station status over space and time in a graphically efficient manner. Origin-Destination maps that visualise the OD matrix directly while maintaining geographic context are used to provide visual details on demand. We use these approaches to identify changes in travel behaviour over space and time, to aid station rebalancing and to provide a framework for incorporating travel modelling and simulation

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    A Fast and Scalable System to Visualize Contour Gradient from Spatio-temporal Data

    Get PDF
    Changes in geological processes that span over the years may often go unnoticed due to their inherent noise and variability. Natural phenomena such as riverbank erosion, and climate change in general, is invisible to humans unless appropriate measures are taken to analyze the underlying data. Visualization helps geological sciences to generate scientific insights into such long-term geological events. Commonly used approaches such as side-by-side contour plots and spaghetti plots do not provide a clear idea about the historical spatial trends. To overcome this challenge, we propose an image-gradient based approach called ContourDiff. ContourDiff overlays gradient vector over contour plots to analyze the trends of change across spatial regions and temporal domain. Our approach first aggregates for each location, its value differences from the neighboring points over the temporal domain, and then creates a vector field representing the prominent changes. Finally, it overlays the vectors (differential trends) along the contour paths, revealing the differential trends that the contour lines (isolines) experienced over time. We designed an interface, where users can interact with the generated visualization to reveal changes and trends in geospatial data. We evaluated our system using real-life datasets, consisting of millions of data points, where the visualizations were generated in less than a minute in a single-threaded execution. We show the potential of the system in detecting subtle changes from almost identical images, describe implementation challenges, speed-up techniques, and scope for improvements. Our experimental results reveal that ContourDiff can reliably visualize the differential trends, and provide a new way to explore the change pattern in spatiotemporal data. The expert evaluation of our system using real-life WRF (Weather Research and Forecasting) model output reveals the potential of our technique to generate useful insights on the spatio-temporal trends of geospatial variables
    corecore