189 research outputs found

    Reflection-Aware Sound Source Localization

    Full text link
    We present a novel, reflection-aware method for 3D sound localization in indoor environments. Unlike prior approaches, which are mainly based on continuous sound signals from a stationary source, our formulation is designed to localize the position instantaneously from signals within a single frame. We consider direct sound and indirect sound signals that reach the microphones after reflecting off surfaces such as ceilings or walls. We then generate and trace direct and reflected acoustic paths using inverse acoustic ray tracing and utilize these paths with Monte Carlo localization to estimate a 3D sound source position. We have implemented our method on a robot with a cube-shaped microphone array and tested it against different settings with continuous and intermittent sound signals with a stationary or a mobile source. Across different settings, our approach can localize the sound with an average distance error of 0.8m tested in a room of 7m by 7m area with 3m height, including a mobile and non-line-of-sight sound source. We also reveal that the modeling of indirect rays increases the localization accuracy by 40% compared to only using direct acoustic rays.Comment: Submitted to ICRA 2018. The working video is available at (https://youtu.be/TkQ36lMEC-M

    Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    Get PDF
    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results

    Bio-Acoustic Tracking and Localization Using Heterogeneous, Scalable Microphone Arrays

    Get PDF
    Microphone arrays are an essential tool in the field of bioacoustics as they provide a non-intrusive way to study animal vocalizations and monitor their movement and behavior. Microphone arrays can be used for passive localization and tracking of sound sources while analyzing beamforming or spatial filtering of the emitted sound. Studying free roaming animals usually requires setting up equipment over large areas and attaching a tracking device to the animal which may alter their behavior. However, monitoring vocalizing animals through arrays of microphones, spatially distributed over their habitat has the advantage that unrestricted/unmanipulated animals can be observed. Important insights have been achieved through the use of microphone arrays, such as the convergent acoustic field of view in echolocating bats or context-dependent functions of avian duets. Here we show the development and application of large flexible microphone arrays that can be used to localize and track any vocalizing animal and study their bio-acoustic behavior. In a first experiment with hunting pallid bats the acoustic data acquired from a dense array with 64 microphones revealed details of the bats’ echolocation beam in previously unseen resolution. We also demonstrate the flexibility of the proposed microphone array system in a second experiment, where we used a different array architecture allowing to simultaneously localize several species of vocalizing songbirds in a radius of 75 m. Our technology makes it possible to do longer measurement campaigns over larger areas studying changing habitats and providing new insights for habitat conservation. The flexible nature of the technology also makes it possible to create dense microphone arrays that can enhance our understanding in various fields of bioacoustics and can help to tackle the analytics of complex behaviors of vocalizing animals

    Hardware for recognition of human activities: a review of smart home and AAL related technologies

    Get PDF
    Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard

    Characterization of multiphase flows integrating X-ray imaging and virtual reality

    Get PDF
    Multiphase flows are used in a wide variety of industries, from energy production to pharmaceutical manufacturing. However, because of the complexity of the flows and difficulty measuring them, it is challenging to characterize the phenomena inside a multiphase flow. To help overcome this challenge, researchers have used numerous types of noninvasive measurement techniques to record the phenomena that occur inside the flow. One technique that has shown much success is X-ray imaging. While capable of high spatial resolutions, X-ray imaging generally has poor temporal resolution. This research improves the characterization of multiphase flows in three ways. First, an X-ray image intensifier is modified to use a high-speed camera to push the temporal limits of what is possible with current tube source X-ray imaging technology. Using this system, sample flows were imaged at 1000 frames per second without a reduction in spatial resolution. Next, the sensitivity of X-ray computed tomography (CT) measurements to changes in acquisition parameters is analyzed. While in theory CT measurements should be stable over a range of acquisition parameters, previous research has indicated otherwise. The analysis of this sensitivity shows that, while raw CT values are strongly affected by changes to acquisition parameters, if proper calibration techniques are used, acquisition parameters do not significantly influence the results for multiphase flow imaging. Finally, two algorithms are analyzed for their suitability to reconstruct an approximate tomographic slice from only two X-ray projections. These algorithms increase the spatial error in the measurement, as compared to traditional CT; however, they allow for very high temporal resolutions for 3D imaging. The only limit on the speed of this measurement technique is the image intensifier-camera setup, which was shown to be capable of imaging at a rate of at least 1000 FPS. While advances in measurement techniques for multiphase flows are one part of improving multiphase flow characterization, the challenge extends beyond measurement techniques. For improved measurement techniques to be useful, the data must be accessible to scientists in a way that maximizes the comprehension of the phenomena. To this end, this work also presents a system for using the Microsoft Kinect sensor to provide natural, non-contact interaction with multiphase flow data. Furthermore, this system is constructed so that it is trivial to add natural, non-contact interaction to immersive visualization applications. Therefore, multiple visualization applications can be built that are optimized to specific types of data, but all leverage the same natural interaction. Finally, the research is concluded by proposing a system that integrates the improved X-ray measurements, with the Kinect interaction system, and a CAVE automatic virtual environment (CAVE) to present scientists with the multiphase flow measurements in an intuitive and inherently three-dimensional manner

    Towards Human Motion Tracking Enhanced by Semi-Continuous Ultrasonic Time-of-Flight Measurements

    Get PDF
    Human motion analysis is a valuable tool for assessing disease progression in persons with conditions such as multiple sclerosis or Parkinson’s disease. Human motion tracking is also used extensively for sporting technique and performance analysis as well as for work life ergonomics evaluations. Wearable inertial sensors (e.g., accelerometers, gyroscopes and/or magnetometers) are frequently employed because they are easy to mount and can be used in real life, out-of-the-lab settings, as opposed to video-based lab setups. These distributed sensors cannot, however, measure relative distances between sensors, and are also cumbersome when it comes to calibration and drift compensation. In this study, we tested an ultrasonic time-of-flight sensor for measuring relative limb-to-limb distance, and we developed a combined inertial sensor and ultrasonic time-of-flight wearable measurement system. The aim was to investigate if ultrasonic time-of-flight sensors can supplement inertial sensor-based motion tracking by providing relative distances between inertial sensor modules. We found that the ultrasonic time-of-flight measurements reflected expected walking motion patterns. The stride length estimates derived from ultrasonic time-of-flight measurements corresponded well with estimates from validated inertial sensors, indicating that the inclusion of ultrasonic time-of flight measurements could be a feasible approach for improving inertial sensor-only systems. Our prototype was able to measure both inertial and time-of-flight measurements simultaneously and continuously, but more work is necessary to merge the complementary approaches to provide more accurate and more detailed human motion tracking.publishedVersio

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Implementation of an Autonomous Impulse Response Measurement System

    Get PDF
    Data collection is crucial for researchers, as it can provide important insights for describing phenomena. In acoustics, acoustic phenomena are characterized by Room Impulse Responses (RIRs) occurring when sound propagates in a room. Room impulse responses are needed in vast quantities for various reasons, including the prediction of acoustical parameters and the rendering of virtual acoustical spaces. Recently, mobile robots navigating within indoor spaces have become increasingly used to acquire information about its environment. However, little research has attempted to utilize robots for the collection of room acoustic data. This thesis presents an adaptable automated system to measure room impulse responses in multi-room environments, using mobile and stationary measurement platforms. The system, known as Autonomous Impulse Response Measurement System (AIRMS), is divided into two stages: data collection and post-processing. To automate data collection, a mobile robotic platform was developed to perform acoustic measurements within a room. The robot was equipped with spatial microphones, multiple loudspeakers and an indoor localization system, which reported real time location of the robot. Additionally, stationary platforms were installed in specific locations inside and outside the room. The mobile and stationary platforms wirelessly communicated with one another to perform the acoustical tests systematically. Since a major requirement of the system is adaptability, researchers can define the elements of the system according to their needs, including the mounted equipment and the number of platforms. Post-processing included extraction of sine sweeps and the calculation of impulse responses. Extraction of the sine sweeps refers to the process of framing every acoustical test signal from the raw recordings. These signals are then processed to calculate the room impulse responses. The automatically collected information was complemented with manually produced data, which included rendering of a 3D model of the room, a panoramic picture. The performance of the system was tested under two conditions: a single-room and a multiroom setting. Room impulse responses were calculated for each of the test conditions, representing typical characteristics of the signals and showing the effects of proximity from sources and receivers, as well as the presence of boundaries. This prototype produces RIR measurements in a fast and reliable manner. Although some shortcomings were noted in the compact loudspeakers used to produce the sine sweeps and the accuracy of the indoor localization system, the proposed autonomous measurement system yielded reasonable results. Future work could expand the amount of impulse response measurements in order to further refine the artificial intelligence algorithms
    • …
    corecore