6 research outputs found

    Logic and intuition in architectural modelling: philosophy of mathematics for computational design

    Get PDF
    This dissertation investigates the relationship between the shift in the focus of architectural modelling from object to system and philosophical shifts in the history of mathematics that are relevant to that change. Particularly in the wake of the adoption of digital computation, design model spaces are more complex, multidimensional, arguably more logical, less intuitive spaces to navigate, less accessible to perception and visual comprehension. Such spatial issues were encountered much earlier in mathematics than in architectural modelling, with the growth of analytical geometry, a transition from Classical axiomatic proofs in geometry as the basis of mathematics, to analysis as the underpinning of geometry. Can the computational design modeller learn from the changing modern history, philosophy and psychology of mathematics about the construction and navigation of computational geometrical architectural system model space? The research is conducted through a review of recent architectural project examples and reference to three more detailed architectural modelling case studies. The spatial questions these examples and case studies raise are examined in the context of selected historical writing in the history, philosophy and psychology of mathematics and space. This leads to conclusions about changes in the relationship of architecture and mathematics, and reflections on the opportunities and limitations for architectural system models using computation geometry in the light of this historical survey. This line of questioning was motivated as a response to the experience of constructing digital associative geometry models and encountering the apparent limits of their flexibility as the graph of dependencies grew and the messiness of the digital modelling space increased. The questions were inspired particularly by working on the Narthex model for the Sagrada Família church, which extends to many tens of thousands of relationships and constraints, and which was modelled and repeatedly partially remodelled over a very long period. This experience led to the realisation that the limitations of the model were not necessarily the consequence of poor logical schema definition, but could be inevitable limitations of the geometry as defined, regardless of the means of defining it, the ‘shape’ of the multidimensional space being created. This led to more fundamental questions about the nature of Space, its relationship to geometry and the extent to which the latter can be considered simply as an operational and notational system. This dissertation offers a purely inductive journey, offering evidence through very selective examples in architecture, architectural modelling and in the philosophy of mathematics. The journey starts with some questions about the tendency of the model space to break out and exhibit unpredictable and not always desirable behaviour and the opportunities for geometrical construction to solve these questions is not conclusively answered. Many very productive questions about computational architectural modelling are raised in the process of looking for answers

    Structure and Reactivity of Aromatic Molecules on Metal Single-Crystal Surfaces and at Metal/Organic Interfaces

    Get PDF
    Low-dimensional carbon-based nanostructures are considered for the fabrication of modern electronic devices. For the realization of such devices, it is of utmost importance to achieve a high control over the structural quality. As a result, the field of on-surface synthesis, which aims at producing well-defined structures from tailor-made molecular precursors, has grown rapidly over the past decade. The reaction most frequently used to conduct on-surface synthesis is the Ullmann coupling reaction. Although a lot of work has already been invested, the fundamental principles determining the outcome of this reaction have not fully been understood to date. One prototypical case for such a situation is the product formation on the basis of precursor molecules that can either form long oligomer chains or macrocycles. This cumulative dissertation thesis contains a number of articles investigating the reaction products of different precursor molecules bearing these characteristics. They are investigated on metal single-crystal surfaces by scanning tunneling microscopy and complementary surface science techniques such as X-ray photoelectron spectroscopy or angle-resolved photoemission spectroscopy, accompanied by Monte Carlo simulations. The ring/chain ratio formed by the model system 1,3-dibromoazulene on Cu(111) was studied. By this means new insights on how the ring/chain ratio can be tunedby variation of coverage and temperature were gained based on fundamental physicochemical considerations. An alternative approach to steer the reaction outcome was used by applying a surface template, i.e., a vicinal Ag surface, to exclusively form long, perfectly aligned oligomer chains from the 4,4''-dibromo-1,1':3',1''-terphenyl precursor. Furthermore, the 2,6-dibromoazulene precursor, which can exclusively form chains, was used to generate nanoribbons of the non-alternant graphene allotropes phagraphene and tetra-penta-hepta-graphene on Au(111). The structures of these species have been unambiguously elucidated by non-contact atomic force microscopy experiments carried out in a collaboration project. As a last project, the structural polymorphism of the pure self-assembly of 1,1':3',1'':4'',1'''-quaterphenyl-4,4'''-dicarbonitrile on the Ag(111) surface was investigated. This molecule shows an adsorbate structure containing flat-lying and upright-standing molecules. Such a structure had not been reported so far. Along with the structures formed, the performance of organic-electronic devices is also crucially dependent on the interactions between the substrate and the organic layer itself. To contribute to this field of research, studies on different model systems, i.e., porphyrins, corroles, and the non-alternant aromatic molecule azulene, have been performed in collaboration projects mostly involving synchrotron radiation beamtimes. In addition to the results already published in scientific journals, some unpublished results are part of this thesis. These are the investigation of the 1,3-dibromoazulene precursor on the Ag(111) surface with co-deposited Cu atoms and the successful initial operation of a commercially available atomic layer injection device. The experimental results are supplemented by the development and construction of technical instrumentation, which expands the capabilities of the measurement setup in the laboratory of the Gottfried group in Marburg

    Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Get PDF
    Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). Kryvyi Rih, Ukraine, May 19-21, 2021.Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року
    corecore