49,471 research outputs found

    Melting-induced stratification above the Earth's inner core due to convective translation

    Get PDF
    In addition to its global North-South anisotropy(1), there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres(2-6) and the presence of a layer of reduced seismic velocity at the base of the outer core(6-12). This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements(13). Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo

    Multi-level Visualization of Concurrent and Distributed Computation in Erlang

    Get PDF
    This paper describes a prototype visualization system for concurrent and distributed applications programmed using Erlang, providing two levels of granularity of view. Both visualizations are animated to show the dynamics of aspects of the computation. At the low level, we show the concurrent behaviour of the Erlang schedulers on a single instance of the Erlang virtual machine, which we call an Erlang node. Typically there will be one scheduler per core on a multicore system. Each scheduler maintains a run queue of processes to execute, and we visualize the migration of Erlang concurrent processes from one run queue to another as work is redistributed to fully exploit the hardware. The schedulers are shown as a graph with a circular layout. Next to each scheduler we draw a variable length bar indicating the current size of the run queue for the scheduler. At the high level, we visualize the distributed aspects of the system, showing interactions between Erlang nodes as a dynamic graph drawn with a force model. Speci?cally we show message passing between nodes as edges and lay out nodes according to their current connections. In addition, we also show the grouping of nodes into “s_groups” using an Euler diagram drawn with circles

    CLPGUI: a generic graphical user interface for constraint logic programming over finite domains

    Full text link
    CLPGUI is a graphical user interface for visualizing and interacting with constraint logic programs over finite domains. In CLPGUI, the user can control the execution of a CLP program through several views of constraints, of finite domain variables and of the search tree. CLPGUI is intended to be used both for teaching purposes, and for debugging and improving complex programs of realworld scale. It is based on a client-server architecture for connecting the CLP process to a Java-based GUI process. Communication by message passing provides an open architecture which facilitates the reuse of graphical components and the porting to different constraint programming systems. Arbitrary constraints and goals can be posted incrementally from the GUI. We propose several dynamic 2D and 3D visualizations of the search tree and of the evolution of finite domain variables. We argue that the 3D representation of search trees proposed in this paper provides the most appropriate visualization of large search trees. We describe the current implementation of the annotations and of the interactive execution model in GNU-Prolog, and report some evaluation results.Comment: 16 pages; Alexandre Tessier, editor; WLPE 2002, http://xxx.lanl.gov/abs/cs.SE/020705

    eulerForce: Force-directed Layout for Euler Diagrams

    Get PDF
    Euler diagrams use closed curves to represent sets and their relationships. They facilitate set analysis, as humans tend to perceive distinct regions when closed curves are drawn on a plane. However, current automatic methods often produce diagrams with irregular, non-smooth curves that are not easily distinguishable. Other methods restrict the shape of the curve to for instance a circle, but such methods cannot draw an Euler diagram with exactly the required curve intersections for any set relations. In this paper, we present eulerForce, as the first method to adopt a force-directed approach to improve the layout and the curves of Euler diagrams generated by current methods. The layouts are improved in quick time. Our evaluation of eulerForce indicates the benefits of a force-directed approach to generate comprehensible Euler diagrams for any set relations in relatively fast time

    Generalized parton distributions: Status and perspectives

    Get PDF
    We summarize recent developments in understanding the concept of generalized parton distributions (GPDs), its relation to nucleon structure, and its application to high-Q2 electroproduction processes. Following a brief review of QCD factorization and transverse nucleon structure, we discuss (a) new theoretical methods for the analysis of deeply-virtual Compton scattering (t-channel-based GPD parametrizations, dispersion relations); (b) the phenomenology of hard exclusive meson production (experimental tests of dominance of small-size configurations, model-independent comparative studies); (c) the role of GPDs in small-x physics and pp scattering (QCD dipole model, central exclusive diffraction). We emphasize the usefulness of the transverse spatial (or impact parameter) representation for both understanding the reaction mechanism in hard exclusive processes and visualizing the physical content of the GPDs.Comment: 10 pages, 6 figures. Proceedings of SPIN2008, University of Virginia, October 6-11, 200

    Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms

    Full text link
    As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.Comment: Accepted for publication in Journal of Fluid Mechanic
    corecore