1,175 research outputs found

    Scheduling and Tuning Kernels for High-performance on Heterogeneous Processor Systems

    Get PDF
    Accelerated parallel computing techniques using devices such as GPUs and Xeon Phis (along with CPUs) have proposed promising solutions of extending the cutting edge of high-performance computer systems. A significant performance improvement can be achieved when suitable workloads are handled by the accelerator. Traditional CPUs can handle those workloads not well suited for accelerators. Combination of multiple types of processors in a single computer system is referred to as a heterogeneous system. This dissertation addresses tuning and scheduling issues in heterogeneous systems. The first section presents work on tuning scientific workloads on three different types of processors: multi-core CPU, Xeon Phi massively parallel processor, and NVIDIA GPU; common tuning methods and platform-specific tuning techniques are presented. Then, analysis is done to demonstrate the performance characteristics of the heterogeneous system on different input data. This section of the dissertation is part of the GeauxDock project, which prototyped a few state-of-art bioinformatics algorithms, and delivered a fast molecular docking program. The second section of this work studies the performance model of the GeauxDock computing kernel. Specifically, the work presents an extraction of features from the input data set and the target systems, and then uses various regression models to calculate the perspective computation time. This helps understand why a certain processor is faster for certain sets of tasks. It also provides the essential information for scheduling on heterogeneous systems. In addition, this dissertation investigates a high-level task scheduling framework for heterogeneous processor systems in which, the pros and cons of using different heterogeneous processors can complement each other. Thus a higher performance can be achieve on heterogeneous computing systems. A new scheduling algorithm with four innovations is presented: Ranked Opportunistic Balancing (ROB), Multi-subject Ranking (MR), Multi-subject Relative Ranking (MRR), and Automatic Small Tasks Rearranging (ASTR). The new algorithm consistently outperforms previously proposed algorithms with better scheduling results, lower computational complexity, and more consistent results over a range of performance prediction errors. Finally, this work extends the heterogeneous task scheduling algorithm to handle power capping feature. It demonstrates that a power-aware scheduler significantly improves the power efficiencies and saves the energy consumption. This suggests that, in addition to performance benefits, heterogeneous systems may have certain advantages on overall power efficiency

    Performance and Power Analysis of HPC Workloads on Heterogenous Multi-Node Clusters

    Get PDF
    Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes, allowing for application optimizations. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. In particular, we show how the same analysis techniques can be applicable on different architectures, analyzing the same HPC application on a high-end and a low-power cluster. The former cluster embeds Intel Haswell CPUs and NVIDIA K80 GPUs, while the latter is made up of NVIDIA Jetson TX1 boards, each hosting an Arm Cortex-A57 CPU and an NVIDIA Tegra X1 Maxwell GPU.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-Blanc projects [17], grant agreements n. 288777, 610402 and 671697. E.C. was partially founded by “Contributo 5 per mille assegnato all’Università degli Studi di Ferrara-dichiarazione dei redditi dell’anno 2014”. We thank the University of Ferrara and INFN Ferrara for the access to the COKA Cluster. We warmly thank the BSC tools group, supporting us for the smooth integration and test of our setup within Extrae and Paraver.Peer ReviewedPostprint (published version

    SPRINT: more runners, fewer hurdles

    Get PDF

    Towards Lightweight AI: Leveraging Stochasticity, Quantization, and Tensorization for Forecasting

    Get PDF
    The deep neural network is an intriguing prognostic model capable of learning meaningful patterns that generalize to new data. The deep learning paradigm has been widely adopted across many domains, including for natural language processing, genomics, and automatic music transcription. However, deep neural networks rely on a plethora of underlying computational units and data, collectively demanding a wealth of compute and memory resources for practical tasks. This model complexity prohibits the use of larger deep neural networks for resource-critical applications, such as edge computing. In order to reduce model complexity, several research groups are actively studying compression methods, hardware accelerators, and alternative computing paradigms. These orthogonal research explorations often leave a gap in understanding the interplay of the optimization mechanisms and their overall feasibility for a given task. In this thesis, we address this gap by developing a holistic solution to assess the model complexity reduction theoretically and quantitatively at both high-level and low-level abstractions for training and inference. At the algorithmic level, a novel deep, yet lightweight, recurrent architecture is proposed that extends the conventional echo state network. The architecture employs random dynamics, brain-inspired plasticity mechanisms, tensor decomposition, and hierarchy as the key features to enrich learning. Furthermore, the hyperparameter landscape is optimized via a particle swarm optimization algorithm. To deploy these networks efficiently onto low-end edge devices, both ultra-low and mixed-precision numerical formats are studied within our feedforward deep neural network hardware accelerator. More importantly, the tapered-precision posit format with a novel exact-dot-product algorithm is employed in the low-level digital architectures to study its efficacy in resource utilization. The dynamics of the architecture are characterized through neuronal partitioning and Lyapunov stability, and we show that superlative networks emerge beyond the edge of chaos with an agglomeration of weak learners. We also demonstrate that tensorization improves model performance by preserving correlations present in multi-way structures. Low-precision posits are found to consistently outperform other formats on various image classification tasks and, in conjunction with compression, we achieve magnitudes of speedup and memory savings for both training and inference for the forecasting of chaotic time series and polyphonic music tasks. This culmination of methods greatly improves the feasibility of deploying rich predictive models on edge devices

    NATSA: A Near-Data Processing Accelerator for Time Series Analysis

    Get PDF
    Time series analysis is a key technique for extracting and predicting events in domains as diverse as epidemiology, genomics, neuroscience, environmental sciences, economics, and more. Matrix profile, the state-of-the-art algorithm to perform time series analysis, computes the most similar subsequence for a given query subsequence within a sliced time series. Matrix profile has low arithmetic intensity, but it typically operates on large amounts of time series data. In current computing systems, this data needs to be moved between the off-chip memory units and the on-chip computation units for performing matrix profile. This causes a major performance bottleneck as data movement is extremely costly in terms of both execution time and energy. In this work, we present NATSA, the first Near-Data Processing accelerator for time series analysis. The key idea is to exploit modern 3D-stacked High Bandwidth Memory (HBM) to enable efficient and fast specialized matrix profile computation near memory, where time series data resides. NATSA provides three key benefits: 1) quickly computing the matrix profile for a wide range of applications by building specialized energy-efficient floating-point arithmetic processing units close to HBM, 2) improving the energy efficiency and execution time by reducing the need for data movement over slow and energy-hungry buses between the computation units and the memory units, and 3) analyzing time series data at scale by exploiting low-latency, high-bandwidth, and energy-efficient memory access provided by HBM. Our experimental evaluation shows that NATSA improves performance by up to 14.2x (9.9x on average) and reduces energy by up to 27.2x (19.4x on average), over the state-of-the-art multi-core implementation. NATSA also improves performance by 6.3x and reduces energy by 10.2x over a general-purpose NDP platform with 64 in-order cores.Comment: To appear in the 38th IEEE International Conference on Computer Design (ICCD 2020

    COMPUTATIONAL SCIENCE CENTER

    Full text link
    corecore