48,576 research outputs found

    Visualizing the Structure of Large Trees

    Get PDF
    This study introduces a new method of visualizing complex tree structured objects. The usefulness of this method is illustrated in the context of detecting unexpected features in a data set of very large trees. The major contribution is a novel two-dimensional graphical representation of each tree, with a covariate coded by color. The motivating data set contains three dimensional representations of brain artery systems of 105 subjects. Due to inaccuracies inherent in the medical imaging techniques, issues with the reconstruction algo- rithms and inconsistencies introduced by manual adjustment, various discrepancies are present in the data. The proposed representation enables quick visual detection of the most common discrepancies. For our driving example, this tool led to the modification of 10% of the artery trees and deletion of 6.7%. The benefits of our cleaning method are demonstrated through a statistical hypothesis test on the effects of aging on vessel structure. The data cleaning resulted in improved significance levels.Comment: 17 pages, 8 figure

    Algorithms for Visualizing Phylogenetic Networks

    Full text link
    We study the problem of visualizing phylogenetic networks, which are extensions of the Tree of Life in biology. We use a space filling visualization method, called DAGmaps, in order to obtain clear visualizations using limited space. In this paper, we restrict our attention to galled trees and galled networks and present linear time algorithms for visualizing them as DAGmaps.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Visualizing Evolving Trees

    Full text link
    Evolving trees arise in many real-life scenarios from computer file systems and dynamic call graphs, to fake news propagation and disease spread. Most layout algorithms for static trees, however, do not work well in an evolving setting (e.g., they are not designed to be stable between time steps). Dynamic graph layout algorithms are better suited to this task, although they often introduce unnecessary edge crossings. With this in mind we propose two methods for visualizing evolving trees that guarantee no edge crossings, while optimizing (1) desired edge length realization, (2) layout compactness, and (3) stability. We evaluate the two new methods, along with four prior approaches (two static and two dynamic), on real-world datasets using quantitative metrics: stress, desired edge length realization, layout compactness, stability, and running time. The new methods are fully functional and available on github

    Mapping Topographic Structure in White Matter Pathways with Level Set Trees

    Full text link
    Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees---which provide a concise representation of the hierarchical mode structure of probability density functions---offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N=30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber tracks and an efficient segmentation of the tracks that has empirical accuracy comparable to standard nonparametric clustering methods. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output

    TreeViewJ: An Application for Viewing and Analyzing Phylogenetic Trees

    Get PDF
    BACKGROUND. Phylogenetic trees are widely used to visualize evolutionary relationships between different organisms or samples of the same organism. There exists a variety of both free and commercial tree visualization software available, but limitations in these programs often require researchers to use multiple programs for analysis, annotation, and the production of publication-ready images. RESULTS. We present TreeViewJ, a Java tool for visualizing, editing and analyzing phylogenetic trees. The software allows researchers to color and change the width of branches that they wish to highlight, and add names to nodes. If collection dates are available for taxa, the software can map them onto a timeline, and sort the tree in ascending or descending date order. CONCLUSION. TreeViewJ is a tool for researchers to visualize, edit, "decorate," and produce publication-ready images of phylogenetic trees. It is open-source, and released under an GPL license, and available at http://treeviewj.sourceforge.net

    Visualizing Decision Trees and Forests using Radial Trees

    Get PDF
    Data visualization has become a big representation of many company’s data and schedules. Now people are not using just simple bar graphs and pie charts in business meetings but utilizing other fields of study and even more complex graphs. By using multiple visualizations to display their results and projects, it is letting more outside people understand what they are working on and can lead to more viewpoints on the topic being displayed. Also, schedules for projects are now being displayed visually so the workers can see how much time each part of their project is going to take. With this increase in visualization, decision trees are now starting to become visualized. Decision trees zero in on object classification and find a way to label or group those objects. In this paper, complex decision trees that can be hard to understand for everyone will be visualized using radial trees. The program will take the advantages that radial trees offer for data and create an interactive display for users of decision trees and forests

    Visualizing Contour Trees within Histograms

    Get PDF

    RELT - Visualizing trees on mobile devices

    Full text link
    The small screens on increasingly used mobile devices challenge the traditional visualization methods designed for desktops. This paper presents a method called "Radial Edgeless Tree" (RELT) for visualizing trees in a 2-dimensional space. It combines the existing connection tree drawing with the space-filling approach to achieve the efficient display of trees in a small geometrical area, such as the screen that are commonly used in mobile devices. We recursively calculate a set of non-overlapped polygonal nodes that are adjacent in the hierarchical manner. Thus, the display space is fully used for displaying nodes, while the hierarchical relationships among the nodes are presented by the adjacency (or boundary-sharing) of the nodes. It is different from the other traditional connection approaches that use a node-link diagram to present the parent-child relationships which waste the display space. The hierarchy spreads from north-west to south-east in a top-down manner which naturally follows the traditional way of human perception of hierarchies. We discuss the characteristics, advantages and limitations of this new technique and suggestions for future research. © Springer-Verlag Berlin Heidelberg 2007

    Uncertainty in phylogenetic tree estimates

    Full text link
    Estimating phylogenetic trees is an important problem in evolutionary biology, environmental policy and medicine. Although trees are estimated, their uncertainties are discarded by mathematicians working in tree space. Here we explicitly model the multivariate uncertainty of tree estimates. We consider both the cases where uncertainty information arises extrinsically (through covariate information) and intrinsically (through the tree estimates themselves). The importance of accounting for tree uncertainty in tree space is demonstrated in two case studies. In the first instance, differences between gene trees are small relative to their uncertainties, while in the second, the differences are relatively large. Our main goal is visualization of tree uncertainty, and we demonstrate advantages of our method with respect to reproducibility, speed and preservation of topological differences compared to visualization based on multidimensional scaling. The proposal highlights that phylogenetic trees are estimated in an extremely high-dimensional space, resulting in uncertainty information that cannot be discarded. Most importantly, it is a method that allows biologists to diagnose whether differences between gene trees are biologically meaningful, or due to uncertainty in estimation.Comment: Final version accepted to Journal of Computational and Graphical Statistic
    • …
    corecore