41,713 research outputs found

    Visualizing object detection features

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 59-61).We introduce algorithms to visualize feature spaces used by object detectors. The tools in this paper allow a human to put on 'HOG goggles' and perceive the visual world as a HOG based object detector sees it. We found that these visualizations allow us to analyze object detection systems in new ways and gain new insight into the detector's failures. For example, when we visualize high scoring false alarms, we discovered that, although they are clearly wrong in image space, they do look deceptively similar to true positives in feature space. This result suggests that many of these false alarms are caused by our choice of feature space, and indicates that creating a better learning algorithm or building bigger datasets is unlikely to correct these errors. By visualizing feature spaces, we can gain a more intuitive understanding of our detection systems.by Carl Vondrick.S.M

    Visualizing classification of natural video sequences using sparse, hierarchical models of cortex.

    Get PDF
    Recent work on hierarchical models of visual cortex has reported state-of-the-art accuracy on whole-scene labeling using natural still imagery. This raises the question of whether the reported accuracy may be due to the sophisticated, non-biological back-end supervised classifiers typically used (support vector machines) and/or the limited number of images used in these experiments. In particular, is the model classifying features from the object or the background? Previous work (Landecker, Brumby, et al., COSYNE 2010) proposed tracing the spatial support of a classifier’s decision back through a hierarchical cortical model to determine which parts of the image contributed to the classification, compared to the positions of objects in the scene. In this way, we can go beyond standard measures of accuracy to provide tools for visualizing and analyzing high-level object classification. We now describe new work exploring the extension of these ideas to detection of objects in video sequences of natural scenes

    Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

    Get PDF
    Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.Comment: 35 pages, 15 figure

    Visualizing and Understanding Convolutional Networks

    Full text link
    Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we address both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. We also perform an ablation study to discover the performance contribution from different model layers. This enables us to find model architectures that outperform Krizhevsky \etal on the ImageNet classification benchmark. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets
    corecore