850 research outputs found

    Bibliometric Mapping of the Computational Intelligence Field

    Get PDF
    In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996–2000 and 2001–2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the field are identified. It turns out that computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problems, and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent position.neural networks;bibliometric mapping;fuzzy systems;bibliometrics;computational intelligence;evolutionary computation

    Multivariate discretization of continuous valued attributes.

    Get PDF
    The area of Knowledge discovery and data mining is growing rapidly. Feature Discretization is a crucial issue in Knowledge Discovery in Databases (KDD), or Data Mining because most data sets used in real world applications have features with continuously values. Discretization is performed as a preprocessing step of the data mining to make data mining techniques useful for these data sets. This thesis addresses discretization issue by proposing a multivariate discretization (MVD) algorithm. It begins withal number of common discretization algorithms like Equal width discretization, Equal frequency discretization, Naïve; Entropy based discretization, Chi square discretization, and orthogonal hyper planes. After that comparing the results achieved by the multivariate discretization (MVD) algorithm with the accuracy results of other algorithms. This thesis is divided into six chapters, covering a few common discretization algorithms and tests these algorithms on a real world datasets which varying in size and complexity, and shows how data visualization techniques will be effective in determining the degree of complexity of the given data set. We have examined the multivariate discretization (MVD) algorithm with the same data sets. After that we have classified discrete data using artificial neural network single layer perceptron and multilayer perceptron with back propagation algorithm. We have trained the Classifier using the training data set, and tested its accuracy using the testing data set. Our experiments lead to better accuracy results with some data sets and low accuracy results with other data sets, and this is subject ot the degree of data complexity then we have compared the accuracy results of multivariate discretization (MVD) algorithm with the results achieved by other discretization algorithms. We have found that multivariate discretization (MVD) algorithm produces good accuracy results in comparing with the other discretization algorithm

    DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling

    Full text link
    This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multidimensional scaling for generating maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a significantly improved local and nonlocal generalization of the isometric mapping as compared to analogous non-parametric counterparts. Importantly, the combination of a deep-learning framework with a multidimensional scaling objective enables a numerical analysis of network architectures to aid in understanding their representation power. This provides a geometric perspective to the generalizability of deep learning.Comment: 10 pages, 11 Figure

    The use of linear projections in the visual analysis of signals in an indoor optical wireless link

    Get PDF

    Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present investigation, we have used an exhaustive metabolite profiling approach to search for biomarkers in recombinant <it>Aspergillus nidulans </it>(mutants that produce the 6- methyl salicylic acid polyketide molecule) for application in metabolic engineering.</p> <p>Results</p> <p>More than 450 metabolites were detected and subsequently used in the analysis. Our approach consists of two analytical steps of the metabolic profiling data, an initial non-linear unsupervised analysis with Self-Organizing Maps (SOM) to identify similarities and differences among the metabolic profiles of the studied strains, followed by a second, supervised analysis for training a classifier based on the selected biomarkers. Our analysis identified seven putative biomarkers that were able to cluster the samples according to their genotype. A Support Vector Machine was subsequently employed to construct a predictive model based on the seven biomarkers, capable of distinguishing correctly 14 out of the 16 samples of the different <it>A. nidulans </it>strains.</p> <p>Conclusion</p> <p>Our study demonstrates that it is possible to use metabolite profiling for the classification of filamentous fungi as well as for the identification of metabolic engineering targets and draws the attention towards the development of a common database for storage of metabolomics data.</p

    Interpretable Machine Learning for Self-service High-risk Decision Making

    Get PDF
    This research contributes to interpretable machine learning via visual knowledge discovery in General Line Coordinates (GLC). The concepts of hyperblocks as interpretable dataset units and GLC are combined to create a visual self-service machine learning model. Two variants of GLC known as Dynamic Scaffold Coordinates (DSC) are proposed. DSC1 and DSC2 can map in a lossless manner multiple dataset attributes to a single two-dimensional (X, Y) Cartesian plane using a dynamic scaffolding graph construction algorithm. Hyperblock analysis is used to determine visually appealing dataset attribute orders and to reduce line occlusion. It is shown that hyperblocks can generalize decision tree rules and a series of DSC1 or DSC2 plots can visualize in a lossless manner n-D data in accordance with a decision tree model. For large decision trees with many branches such as MNIST handwritten digits where hyperblock discovery was hampered, dimensionality reduction techniques such as principal component analysis, singular value decomposition, and t-distributed stochastic neighbor embedding were used to create new attributes of interest for visual class separation. Major benefits of DSC1 and DSC2 is their highly interpretable nature. They allow domain experts to control or establish new machine learning models through visual pattern discovery. A software package referred to as Dynamic Scaffold Coordinates Visualization System (DSCViz) was created to showcase the DSC1 and DSC2 systems. DSCViz expands the end-user’s capabilities by offering several functions such as real-time drag and zoom, scaling techniques, sample clipping, attribute reordering, and the ability to hide classes or change their colors. DSC2 was used to estimate and visualize the worst-case validation splits in the Wisconsin Breast Cancer, Iris, and Seeds dataset. DSC2 was also plotted against MNIST Handwritten digits to determine its feasibility in large datasets. In general, the technique of estimating worst-case validation splits is important for every high-risk application
    • …
    corecore