348 research outputs found

    Developing Consequence Thresholds for Storm Models Through Participatory Processes: Case Study of Westerly Rhode Island

    Get PDF
    Emergency managers face challenges in understanding and communicating potential hurricane hazards. Preparedness typically emphasizes the last event encountered, the potential implications of future hazards may thus be underestimated. Risk assessment models (e.g., basic HAZUS) that emphasize accumulated damages in economic terms do not provide actionable data regarding specific local concerns, such as access by emergency vehicles and potential communications disruptions. Qualitative methods conventionally used to identify these concerns, however, lack the specificity necessary to incorporate the managers’ knowledge into hazard models (e.g., highly exact geographic location of the vulnerability or cascading consequences). This research develops a method to collect rich, actionable, qualitative data from critical facility managers that can be utilized in combination with hydrodynamic, wind, and precipitation models to assess potential hazard consequences. A pilot study was conducted with critical facility managers in Westerly, RI, United States, using semi-structured interviews and participatory mapping. Interview methods were based on existing practices for vulnerability assessments, and further augmented to obtain data based on hurricane modeling requirements. This research identifies challenges and recommendations when collecting critical facility manager’s knowledge for incorporation into storm simulations. The method described enables local experts to contribute actionable knowledge to natural hazard models and augment more traditional engineering-based approaches to risk assessment

    life More Photographic; mapping the networked image

    Get PDF
    Twenty two years since the arrival of the first consumer digital camera (Tatsuno 36) Western culture is now characterised by ubiquitous photography. The disappearance of the camera inside the mobile phone has ensured that even the most banal moments of the day can become a point of photographic reverie, potentially shared instantly. Supported by the increased affordability of computers, digital storage and access to broadband, consumers are provided with new opportunities for the capture and transmission of images, particularly online where snapshot photography is being transformed from an individual to a communal activity. As the digital image proliferates online and becomes increasingly delivered via networks, numerous practices emerge surrounding the image’s transmission, encoding, ordering and reception. Informing these practices is a growing cultural shift towards a conception of the Internet as a platform for sharing and collaboration, supported by a mosaic of technologies termed Web 2.0

    Abstract visualization of large-scale time-varying data

    Get PDF
    The explosion of large-scale time-varying datasets has created critical challenges for scientists to study and digest. One core problem for visualization is to develop effective approaches that can be used to study various data features and temporal relationships among large-scale time-varying datasets. In this dissertation, we first present two abstract visualization approaches to visualizing and analyzing time-varying datasets. The first approach visualizes time-varying datasets with succinct lines to represent temporal relationships of the datasets. A time line visualizes time steps as points and temporal sequence as a line. They are generated by sampling the distributions of virtual words across time to study temporal features. The key idea of time line is to encode various data properties with virtual words. We apply virtual words to characterize feature points and use their distribution statistics to measure temporal relationships. The second approach is ensemble visualization, which provides a highly abstract platform for visualizing an ensemble of datasets. Both approaches can be used for exploration, analysis, and demonstration purposes. The second component of this dissertation is an animated visualization approach to study dramatic temporal changes. Animation has been widely used to show trends, dynamic features and transitions in scientific simulations, while animated visualization is new. We present an automatic animation generation approach that simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. We also extend the concept of animated visualization to non-traditional time-varying datasets--network protocols--for visualizing key information in abstract sequences. We have evaluated the effectiveness of our animated visualization with a formal user study and demonstrated the advantages of animated visualization for studying time-varying datasets

    GISualisation: a tool for visually supporting planning processes

    Get PDF
    The evaluation of quality of life in cities can be supported by the analysis of data coming from different sources and describing different aspects such as economic, social, environmental, energy, housing or mobility issues. Nevertheless, the analysis of such big amounts of data is difficult so that only expert technicians can access to their inner contents. Furthermore, the outcomes of these analyses are often presented in static outcomes which reproduce the reasoning of technicians who have not expertise in urban studies. Thus, planners and decision-makers have to base their own choices on given outcomes without opportunities for personally investigating the inner contents of data. In order to facilitate the data exploration and readability by non-technicians, a GIS-based visualization tool, namely “GISualisation”, has been realized to give to both planners and actors involved in planning processes, a decision support system useful to visualize the inter-relations between data which describe cities. The tool is a web-based interactive visual tool, which works on geo-referenced dynamic maps, currently created with free Web GIS applications. GISualisation displays data on a map and offers the possibility to select and filter data by single attributes, allowing users to interact readily with large databases and customise the visualisation of information. Thus, the tool offers a simple interface to visualise GIS data on the basis of users’ requests, providing a support for planners and decision-makers to explore data and detect issues of inefficiency, ineffectiveness or critical areas which needs further reasoning on their planning or design. Furthermore, it can be used in collaborative and participatory session so to improve the information sharing among participants. Depending on the case study, the tool can be adapted and customized to visualise different type of data, ensuring user-friendliness and possibility to explore the relationships between data. GISualisation has already been applied in investigating inefficiencies in a public transport system (Pensa, Masala, Arnone, & Rosa, 2013), in studying pedestrian paths in an urban area, in analysing urban population health and in the evaluation of social housing projects. Further developments will include the integration with the interactive Visualisation Tool (InViTo) (Pensa, Masala, & Lami, 2013; Pensa & Masala, 2014) and the possibility to include real-time data feeds. Through GISualisation, data on quality of life can be investigated and visually analysed so to offer a new tool to actors involved in planning process for detecting critical areas and improving the urban planning process

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Turbulent structure in environmental flows: effects of stratification and rotation

    Get PDF
    Several series of experiments in stratified and in rotating/stratified decaying flows after a grid is used to stir the two layer stable fluid brine and fresh water set up. We measure by comparing the gained potential energy with the available kinetic energy AKE, the relative efficiency of mixing. The experiments in stratified rotating flows with grid driven turbulence were both periodic (quasi stationary) and non-monotonic (decaying) forcing. This thesis compares experimental, numerical and field observations on the structure and Topology of the Stratified Rotating Flows as well as their decay, the horizontal spectra changes appreciable with slopes from 1.1 to 5, but vorticity and local circulation, and also the initial topology and forcing of the flow. A detailed study of the vorticity decay and vortex and energy structure has been performed, the new results show that neither stratified nor rotating flows exhibit pure 2D structures. The work parameterizes the role of the Richardson number and the Rossby number, both in the experiments and in the ocean visualizations is very important. The conditions of vortex decay show the effects of the internal waves in the decay turbulent conditions both for stratified and rotating flows. The parameter space (Re,Ri,Ro) has been used to interpret many previously disconnected explanations of the 2D-3D turbulent behaviour. The comparison of numerical simulations with experiments has allowed implementing new theoretical aspects of the interaction between waves and vortices finding the surprising and very interesting result that these interactions depend on the level of enstrophy. This also leads to new ways of using multifractal analysis ad intermittency in ocean environmental observations. A large collection of SAR images obtained from three European coastal areas were used for routine satellite analysis by SAR and other sensors, which seem very important to build seasonal databases of the dynamic conditions of ocean mixing. The topology of the basic flow is very important and in particular the topology of the vortices and their decay which depends on ambient factors such as wave activity, wind and currents. We find more realistic estimates of the spatial/temporal non-homogeneities (and intermittency obtained as spatial correlations of the turbulent dissipation); these values are used to parameterize the sea surface turbulence, as well as a laboratory experiments at a variety of scales. Using multi-fractal geometry as well, we can establish now a theoretical pattern for the turbulence behaviour that is reflected in the different descriptors. Vorticity evolution is smoother and different than that of scalar or tracer density. The correlation between the local Ri and the fractal dimension detected from energy or entropy is good. Using multi-fractal geometry we can also establish certain regions of higher local activity used to establish the geometry of the turbulence mixing that needs to be studied in detail when interpreting the complex balance between the direct 3D Kolmogorov type cascade and the Inverse 2D Kraichnan type cascade

    The impact of Hurricane Ike on the geomorphology of Follett's Island, Texas - short and long term effects

    Get PDF
    In many places along the U.S. East and Gulf Coast, barrier islands are the first line of defense against extreme weather events threatening our coastlines. Follett’s Island is a sediment-starved barrier island located on the Upper Texas Coast; a stretch of coastline that experiences on average four hurricanes and four tropical cyclones per decade. As the topic of this thesis the impact of Hurricane Ike on Follett’s Island (FI), TX is studied. The goal of this study is to address how Hurricane Ike affected the sediment supply on the subaerial beach and foredune of FI, how the island recovered following the hurricane, and what physical processes governed the response of the island during the hurricane. This study first outlines the collection of available hydrographic, atmospheric, aerial and survey data and provides an analysis of these data to characterize the long term metocean and geomorphological state of the island. It was found that water levels at FI during Hurricane Ike exceeded the 100 year water levels, and wave heights matched roughly the 40 year exceedance levels. From LiDAR surveys, it is clear that despite an initial sediment volume loss after the hurricane, the foredune and subaerial beach ultimately experienced a net gain in sediment volume (up to 25%), and an extension of the shoreline (up to 25 m) after a five year recovery period. Numerical modeling tools XBeach and CSHORE were employed in an attempt to numerically reproduce the observed effects of the hurricane on FI. The ultimate goal of the numerical modeling is to show a real time response of the island during the passing of the storm, rather than the before and after snapshots provided by LiDAR data. XBeach displayed a decent model skill of 0.34 and was very useful in qualitatively visualizing erosion and deposition patterns. CSHORE also displayed a decent model skill of 0.33 and was able to accurately predict the post-storm beach slope and shoreline, but was less effective at simulating the foredune morphology. Based on these data, the subaerial beach and foredune ultimately experienced a net gain in sediment volume after recovering from Hurricane Ike. This is a phenomenon that is contrary to the findings of other studies, and thus it is clear that sediment-starved barrier islands like FI need fundamentally different coastal protection considerations than other coastal systems
    • …
    corecore