767 research outputs found

    Pivotal Visualization:A Design Method to Enrich Visual Exploration

    Get PDF

    Visual analytics of location-based social networks for decision support

    Get PDF
    Recent advances in technology have enabled people to add location information to social networks called Location-Based Social Networks (LBSNs) where people share their communication and whereabouts not only in their daily lives, but also during abnormal situations, such as crisis events. However, since the volume of the data exceeds the boundaries of human analytical capabilities, it is almost impossible to perform a straightforward qualitative analysis of the data. The emerging field of visual analytics has been introduced to tackle such challenges by integrating the approaches from statistical data analysis and human computer interaction into highly interactive visual environments. Based on the idea of visual analytics, this research contributes the techniques of knowledge discovery in social media data for providing comprehensive situational awareness. We extract valuable hidden information from the huge volume of unstructured social media data and model the extracted information for visualizing meaningful information along with user-centered interactive interfaces. We develop visual analytics techniques and systems for spatial decision support through coupling modeling of spatiotemporal social media data, with scalable and interactive visual environments. These systems allow analysts to detect and examine abnormal events within social media data by integrating automated analytical techniques and visual methods. We provide comprehensive analysis of public behavior response in disaster events through exploring and examining the spatial and temporal distribution of LBSNs. We also propose a trajectory-based visual analytics of LBSNs for anomalous human movement analysis during crises by incorporating a novel classification technique. Finally, we introduce a visual analytics approach for forecasting the overall flow of human crowds

    A WEB-BASED PLATFORM FOR VISUALIZING SPATIOTEMPORAL DYNAMICS OF BIG TAXI DATA

    Get PDF

    LAND USE CLASSIFICATION FROM COMBINED USE OF REMOTE SENSING AND SOCIAL SENSING DATA

    Get PDF
    Large amounts of data can be sensed and analyzed to discover patterns of human behavior in cities for the benefit of urban authorities and citizens, especially in the areas of traffic forecasting, urban planning, and social science. In New York, USA, social sensing, remote sensing, and urban land use information support the discovery of patterns of human behavior. This research uses two types of openly accessible data, namely, social sensing data and remote sensing data. Bike and taxi data are examples of social sensing data, whereas sentinel remote sensed imagery is an example of remote sensing data. This research aims to sense and analyze the patterns of human behavior and to classify land use from the combination of remote sensing data and social sensing data. A decision tree is used for land use classification. Bike and taxi density maps are generated to show the locations of people around the city during the two peak times. On the basis of a geographic information system, the maps also reflect the residential and office areas in the city. The overall accuracy of land use classification after the consideration of social sensing data is 85.3%. The accuracy assessment shows that the combination of remote sensing data and social sensing data facilitates accurate urban land use classification
    corecore