258 research outputs found

    Algorithmic Graph Theory

    Get PDF
    The main focus of this workshop was on mathematical techniques needed for the development of efficient solutions and algorithms for computationally difficult graph problems. The techniques studied at the workshhop included: the probabilistic method and randomized algorithms, approximation and optimization, structured families of graphs and approximation algorithms for large problems. The workshop Algorithmic Graph Theory was attended by 46 participants, many of them being young researchers. In 15 survey talks an overview of recent developments in Algorithmic Graph Theory was given. These talks were supplemented by 10 shorter talks and by two special sessions

    A visual multivariate dynamic egocentric network exploration tool

    Get PDF
    Visualizing multivariate dynamic networks is a challenging task. The evolution of the dynamic network within the temporal axis must be depicted in conjunction with the associated multivariate attributes. In this thesis, an exploratory visual analytics tool is proposed to display multivariate dynamic networks with spatial attributes. The proposed tool displays the distribution of multivariate temporal domain and network attributes in scattered views. Moreover, in order to expose the evolution of a single or a group of nodes in the dynamic network along the temporal axis, an egocentric approach is applied in which a node is represented with its neighborhood as an ego-network. This approach allows users to observe a node's surrounding environment along the temporal axis. On top of the traditional ego-network visualization methods, such as timelines, the proposed tool encodes ego-networks as feature vectors consisting of the domain and network attributes and projects them onto 2D views. As a result, distances between projected ego-networks represent the dissimilarity across temporal axis in a single view. The proposed tool is demonstrated with a real-world use case scenario on merchant networks obtained from a one-year long credit card transaction

    Mixed Qualitative/Quantitative Dynamic Simulation of Processing Systems

    Get PDF
    ABSTRACT: In this article the methodology proposed by Li an

    Visualization of graphs and trees for software analysis

    Get PDF
    A software architecture is an abstraction of a software system, which is indispensable for many software engineering tasks. Unfortunately, in many cases information pertaining to the software architecture is not available, outdated, or inappropriate for the task at hand. The RECONSTRUCTOR project focuses on software architecture reconstruction, i.e., obtaining architectural information from an existing system. Our research, which is part of RECONSTRUCTOR, focuses on interactive visualization and tries to answer the following question: How can users be enabled to understand the large amounts of information relevant for program understanding using visual representations? To answer this question, we have iteratively developed a number of techniques for visualizing software systems. A large number of these cases consists of hierarchically organized data, combined with adjacency relations. Examples are function calls within a hierarchically organized software system and correspondence relations between two different versions of a hierarchically organized software system. Hierarchical Edge Bundles (HEBs) are used to visualize adjacency relations in hierarchically organized data, such as the aforementioned function calls within a software system. HEBs significantly reduce visual clutter by visually bundling relations together. Massive Sequence Views (MSVs) are used in conjunction with HEBs to enable analysis of sequences of relations, such as function-call traces. HEBs are furthermore used to visually compare hierarchically organized data, e.g., two different versions of a software system. HEBs visually emphasize splits, joins, and relocations of subhierarchies and provide for interactive selection of sets of relations. Since HEBs require a hierarchy to perform the bundling, we present Force-Directed Edge Bundles (FDEBs) as an alternative to visually bundle relations together in the absence of a hierarchical component. FDEBs use a self-organizing approach to bundling in which edges are modeled as flexible springs that can attract each other. As a result, visual clutter is reduced and high-level edge patterns are better visible. Finally, in all these methods, a clear depiction of the direction of edges is important. We have therefore performed a separate study in which we evaluated ten representations (including the standard arrow) for depicting directed edges in a controlled user study

    Characterization of complex networks: A survey of measurements

    Full text link
    Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the proper application and interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of measurements for inclusion are welcomed by the author
    corecore