2,435 research outputs found

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    SOA-RTDBS: A service oriented architecture (SOA) supporting real time database systems

    Get PDF
    With the increase of complexity in Real-time Database Systems (RTDBS), the amount of data that needs to be managed has also increased. Adoption of a RTDBS as a tightly integrated part of the SOA development process can give significant benefits with respect to data management. However, the variability of data management requirements in different systems, and its heterogeneity may require a distinct database configuration. We addressed the challenges that face RTDB managers who intend to adopt RTDBS in SOA market; we also introduce a service oriented approach to RTDBS analytics and describe how this is used to measure and to monitor the security system. A SOA approach for generating RTDBS configurations suitable for resource-constrained real-time systems using Service Oriented Architecture tools to assist developers with design and analysis of services of developed or new systems was also explored

    Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries

    Full text link
    This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in large time series. Instead of focusing on detecting outliers at each time point, we monitor and display the discrepant temporal signatures of each data entry concerning the overall distributions. Our prototype is designed to handle these tasks in parallel to improve performance. To highlight the benefits and performance of our approach, we illustrate and validate the use of Outliagnostics on real-world datasets of various sizes in different parallelism configurations. This work also discusses how to extend these ideas to handle time series with a higher number of dimensions and provides a prototype for this type of datasets.Comment: in IEEE Visualization in Data Science (IEEE VDS) (2019

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org
    corecore