14,255 research outputs found

    Constraint Diagrams: Visualizing Invariants in OO Modelling

    Get PDF
    A new visual notation is proposed for precisely expressing constraints on object-oriented models, as an alternative to mathematical logic notation used in methods such as Syntropy and Catalysis. The notation is potentially intuitive, expressive, integrates well with existing visual notations, and has a clear and unambiguous semantics. It is reminiscent of informal diagrams used by mathematicians for illustrating relations, and borrows much from Venn diagrams. It may be viewed as a generalization of instance diagrams

    The DynAlloy Visualizer

    Full text link
    We present an extension to the DynAlloy tool to navigate DynAlloy counterexamples: the DynAlloy Visualizer. The user interface mimics the functionality of a programming language debugger. Without this tool, a DynAlloy user is forced to deal with the internals of the Alloy intermediate representation in order to debug a flaw in her model.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    Footprints of information foragers: Behaviour semantics of visual exploration

    Get PDF
    Social navigation exploits the knowledge and experience of peer users of information resources. A wide variety of visual–spatial approaches become increasingly popular as a means to optimize information access as well as to foster and sustain a virtual community among geographically distributed users. An information landscape is among the most appealing design options of representing and communicating the essence of distributed information resources to users. A fundamental and challenging issue is how an information landscape can be designed such that it will not only preserve the essence of the underlying information structure, but also accommodate the diversity of individual users. The majority of research in social navigation has been focusing on how to extract useful information from what is in common between users' profiles, their interests and preferences. In this article, we explore the role of modelling sequential behaviour patterns of users in augmenting social navigation in thematic landscapes. In particular, we compare and analyse the trails of individual users in thematic spaces along with their cognitive ability measures. We are interested in whether such trails can provide useful guidance for social navigation if they are embedded in a visual–spatial environment. Furthermore, we are interested in whether such information can help users to learn from each other, for example, from the ones who have been successful in retrieving documents. In this article, we first describe how users' trails in sessions of an experimental study of visual information retrieval can be characterized by Hidden Markov Models. Trails of users with the most successful retrieval performance are used to estimate parameters of such models. Optimal virtual trails generated from the models are visualized and animated as if they were actual trails of individual users in order to highlight behavioural patterns that may foster social navigation. The findings of the research will provide direct input to the design of social navigation systems as well as to enrich theories of social navigation in a wider context. These findings will lead to the further development and consolidation of a tightly coupled paradigm of spatial, semantic and social navigation

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Measuring, Predicting and Visualizing Short-Term Change in Word Representation and Usage in VKontakte Social Network

    Full text link
    Language in social media is extremely dynamic: new words emerge, trend and disappear, while the meaning of existing words can fluctuate over time. Such dynamics are especially notable during a period of crisis. This work addresses several important tasks of measuring, visualizing and predicting short term text representation shift, i.e. the change in a word's contextual semantics, and contrasting such shift with surface level word dynamics, or concept drift, observed in social media streams. Unlike previous approaches on learning word representations from text, we study the relationship between short-term concept drift and representation shift on a large social media corpus - VKontakte posts in Russian collected during the Russia-Ukraine crisis in 2014-2015. Our novel contributions include quantitative and qualitative approaches to (1) measure short-term representation shift and contrast it with surface level concept drift; (2) build predictive models to forecast short-term shifts in meaning from previous meaning as well as from concept drift; and (3) visualize short-term representation shift for example keywords to demonstrate the practical use of our approach to discover and track meaning of newly emerging terms in social media. We show that short-term representation shift can be accurately predicted up to several weeks in advance. Our unique approach to modeling and visualizing word representation shifts in social media can be used to explore and characterize specific aspects of the streaming corpus during crisis events and potentially improve other downstream classification tasks including real-time event detection

    Towards Analyzing Semantic Robustness of Deep Neural Networks

    Full text link
    Despite the impressive performance of Deep Neural Networks (DNNs) on various vision tasks, they still exhibit erroneous high sensitivity toward semantic primitives (e.g. object pose). We propose a theoretically grounded analysis for DNN robustness in the semantic space. We qualitatively analyze different DNNs' semantic robustness by visualizing the DNN global behavior as semantic maps and observe interesting behavior of some DNNs. Since generating these semantic maps does not scale well with the dimensionality of the semantic space, we develop a bottom-up approach to detect robust regions of DNNs. To achieve this, we formalize the problem of finding robust semantic regions of the network as optimizing integral bounds and we develop expressions for update directions of the region bounds. We use our developed formulations to quantitatively evaluate the semantic robustness of different popular network architectures. We show through extensive experimentation that several networks, while trained on the same dataset and enjoying comparable accuracy, do not necessarily perform similarly in semantic robustness. For example, InceptionV3 is more accurate despite being less semantically robust than ResNet50. We hope that this tool will serve as a milestone towards understanding the semantic robustness of DNNs.Comment: Presented at European conference on computer vision (ECCV 2020) Workshop on Adversarial Robustness in the Real World ( https://eccv20-adv-workshop.github.io/ ) [best paper award]. The code is available at https://github.com/ajhamdi/semantic-robustnes
    • 

    corecore