834 research outputs found

    Visualization of multiple molecular simulation paths

    Get PDF
    Molecular Dynamics (MD) is a computer simulation method that studies the physical movements of atoms and molecules. For a simulation to be stable it requires little time steps, and each time step needs a substantial amount of computation. They are costly. For that very reason they are often calculated in super-computers, calculating and obtaining dozens or hundreds of trajectories. Once they are obtained they need to be inspected, but the current methods do not allow for an inspection of the whole set at the same time, taking even longer In this project we have developed a visualization system able to provide the necessary tools to have an overview of multiple trajectories, easily find patterns and provide information on detail about individual trajectories if needed

    3D visualization of cadastre : assessing the suitability of visual variables and enhancement techniques in the 3D model of condominium property units

    Get PDF
    La visualisation 3D de données cadastrales a été exploitée dans de nombreuses études, car elle offre de nouvelles possibilités d’examiner des situations de supervision verticale des propriétés. Les chercheurs actifs dans ce domaine estiment que la visualisation 3D pourrait fournir aux utilisateurs une compréhension plus intuitive d’une situation où des propriétés se superposent, ainsi qu’une plus grande capacité et avec moins d’ambiguïté de montrer des problèmes potentiels de chevauchement des unités de propriété. Cependant, la visualisation 3D est une approche qui apporte de nombreux défis par rapport à la visualisation 2D. Les précédentes recherches effectuées en cadastre 3D, et qui utilisent la visualisation 3D, ont très peu enquêté l’impact du choix des variables visuelles (ex. couleur, style) sur la prise de décision. Dans l’optique d'améliorer la visualisation 3D de données cadastres, cette thèse de doctorat examine l’adéquation du choix des variables visuelles et des techniques de rehaussement associées afin de produire un modèle de condominium 3D optimal, et ce, en fonction de certaines tâches spécifiques de visualisation. Les tâches visées sont celles dédiées à la compréhension dans l’espace 3D des limites de propriété du condominium. En ce sens, ce sont principalement des tâches notariales qui ont été ciblées. De plus, cette thèse va mettre en lumière les différences de l’impact des variables visuelles entre une visualisation 2D et 3D. Cette thèse identifie dans un premier temps un cadre théorique pour l'interprétation des variables visuelles dans le contexte d’une visualisation 3D et de données cadastrales au regard d’une revue de littéraire. Dans un deuxième temps, des expérimentations ont été réalisées afin de mettre à l’épreuve la performance des variables visuelles (ex. couleur, valeur, texture) et des techniques de rehaussement (transparence, annotation, déplacement). Trois approches distinctes ont été utilisées : 1) discussion directe avec des personnes œuvrant en géomatique, 2) entrevue face à face avec des notaires et 3) questionnaire en ligne avec des groupes ciblés. L’utilisabilité mesurée en termes d’efficacité, d’efficience et de degré de satisfaction a servi aux comparaisons des expérimentations. Les principaux résultats de cette recherche sont : 1) Une liste de tâches visuelles notariales utiles à la délimitation des unités de propriété dans le contexte de la visualisation 3D de condominium ; 2) Des recommandations quant à l'adéquation de huit variables visuelles et de trois techniques de rehaussement afin d’optimiser la réalisation d’un certain nombre de tâches notariales ; 3) Une analyse comparative de la performance de ces variables entre une visualisation 2D et 3D.3D visualization is being widely used in GIS (geographic information system) and CAD (computer-aided design) applications. It has also been introduced in cadastre studies to better communicate overlaps to the viewer, where the property units vertically stretch over or cover one part of the land parcel. Researchers believe that 3D visualization could provide viewers with a more intuitive perception, and it has the capability to demonstrate overlapping property units in condominiums unambiguously. However, 3D visualization has many challenges compared with 2D visualization. Many cadastre researchers adopted 3D visualization without thoroughly investigating the potential users, the visual tasks for decision-making, and the appropriateness of their representation design. Neither designers nor users may be aware of the risk of producing an inadequate 3D visualization, especially in an era when 3D visualization is relatively novel in the cadastre domain. With a general aim to improve the 3D visualization of cadastre data, this dissertation addresses the design of the 3D cadastre model from a graphics semiotics viewpoint including visual variables and enhancement techniques. The research questions are, firstly, what is the suitability of the visual variables and enhancement techniques in the 3D cadastre model to support the intended users' decision-making goal of delimitating condominium property units, and secondly, what are the perceptual properties of visual variables in 3D visualization compared with 2D visualization? This dissertation firstly identifies the theoretical framework for the interpretation of visual variables in 3D visualization as well as cadastre-related knowledge with literature review. Then, we carry out a preliminary evaluation of the feasibility of visual variables and enhancement techniques in a form of an expert-group review. With the result of the preliminary evaluation, this research then performs the hypothetico-deductive scientific approach to establishing a list of hypotheses to be validated by empirical tests regarding the suitability of visual variables and enhancement techniques in a cartographic representation of property units in condominiums for 3D visualization. The evaluation is based on the usability specification, which contains three measurements: effectiveness, efficiency, and preference. Several empirical tests are conducted with cadastral users in the forms of face-to-face interviews and online questionnaires, followed by statistical analysis. Size, shape, brightness, saturation, hue, orientation, texture, and transparency are the most discussed and used visual variables in existing cartographic research and implementations; thus, these eight visual variables have been involved in the tests. Their perceptual properties exhibited in the empirical test with concrete 3D models in this work are compared with those in a 2D visualization, which is derived from a literature-based synthesis. Three enhancement techniques, including labeling, 3D explosion, and highlighting, are tested as well. There are three main outcomes of this work. First, we established a list of visual tasks adapted to notaries for delimiting property units in the context of 3D visualization of condominium cadastres. Second, we describe the suitability of eight visual variables (Size, Shape, Brightness, Saturation, Hue, Orientation, Texture, and Transparency) of the property units and three enhancement techniques (labeling, 3D explosion and highlighting) in the context of 3D visualisation of condominium property units, based on the usability specification for delimitating visual tasks. For example, brightness only shows good performance in helping users distinguish private and common parts in the context of 3D visualization of property units in condominiums. As well, color hue and saturation are effective and preferable. The third outcome is a statement of the perceptual properties’ differences of visual variables between 3D visualization and 2D visualization. For example, according to Bertin (1983)’s definition, orientation is associative and selective in 2D, yet it does not perform in a 3D visualization. In addition, 3D visualization affects the performance of brightness, making it marginally dissociative and selective

    Configurable nD-visualization for complex Building Information Models

    Get PDF
    With the ongoing development of building information modelling (BIM) towards a comprehensive coverage of all construction project information in a semantically explicit way, visual representations became decoupled from the building information models. While traditional construction drawings implicitly contained the visual representation besides the information, nowadays they are generated on the fly, hard-coded in software applications dedicated to other tasks such as analysis, simulation, structural design or communication. Due to the abstract nature of information models and the increasing amount of digital information captured during construction projects, visual representations are essential for humans in order to access the information, to understand it, and to engage with it. At the same time digital media open up the new field of interactive visualizations. The full potential of BIM can only be unlocked with customized task-specific visualizations, with engineers and architects actively involved in the design and development process of these visualizations. The visualizations must be reusable and reliably reproducible during communication processes. Further, to support creative problem solving, it must be possible to modify and refine them. This thesis aims at reconnecting building information models and their visual representations: on a theoretic level, on the level of methods and in terms of tool support. First, the research seeks to improve the knowledge about visualization generation in conjunction with current BIM developments such as the multimodel. The approach is based on the reference model of the visualization pipeline and addresses structural as well as quantitative aspects of the visualization generation. Second, based on the theoretic foundation, a method is derived to construct visual representations from given visualization specifications. To this end, the idea of a domain-specific language (DSL) is employed. Finally, a software prototype proofs the concept. Using the visualization framework, visual representations can be generated from a specific building information model and a specific visualization description.Mit der fortschreitenden Entwicklung des Building Information Modelling (BIM) hin zu einer umfassenden Erfassung aller Bauprojektinformationen in einer semantisch expliziten Weise werden Visualisierungen von den Gebäudeinformationen entkoppelt. Während traditionelle Architektur- und Bauzeichnungen die visuellen Reprä̈sentationen implizit als Träger der Informationen enthalten, werden sie heute on-the-fly generiert. Die Details ihrer Generierung sind festgeschrieben in Softwareanwendungen, welche eigentlich für andere Aufgaben wie Analyse, Simulation, Entwurf oder Kommunikation ausgelegt sind. Angesichts der abstrakten Natur von Informationsmodellen und der steigenden Menge digitaler Informationen, die im Verlauf von Bauprojekten erfasst werden, sind visuelle Repräsentationen essentiell, um sich die Information erschließen, sie verstehen, durchdringen und mit ihnen arbeiten zu können. Gleichzeitig entwickelt sich durch die digitalen Medien eine neues Feld der interaktiven Visualisierungen. Das volle Potential von BIM kann nur mit angepassten aufgabenspezifischen Visualisierungen erschlossen werden, bei denen Ingenieur*innen und Architekt*innen aktiv in den Entwurf und die Entwicklung dieser Visualisierungen einbezogen werden. Die Visualisierungen müssen wiederverwendbar sein und in Kommunikationsprozessen zuverlässig reproduziert werden können. Außerdem muss es möglich sein, Visualisierungen zu modifizieren und neu zu definieren, um das kreative Problemlösen zu unterstützen. Die vorliegende Arbeit zielt darauf ab, Gebäudemodelle und ihre visuellen Repräsentationen wieder zu verbinden: auf der theoretischen Ebene, auf der Ebene der Methoden und hinsichtlich der unterstützenden Werkzeuge. Auf der theoretischen Ebene trägt die Arbeit zunächst dazu bei, das Wissen um die Erstellung von Visualisierungen im Kontext von Bauprojekten zu erweitern. Der verfolgte Ansatz basiert auf dem Referenzmodell der Visualisierungspipeline und geht dabei sowohl auf strukturelle als auch auf quantitative Aspekte des Visualisierungsprozesses ein. Zweitens wird eine Methode entwickelt, die visuelle Repräsentationen auf Basis gegebener Visualisierungsspezifikationen generieren kann. Schließlich belegt ein Softwareprototyp die Realisierbarkeit des Konzepts. Mit dem entwickelten Framework können visuelle Repräsentationen aus jeweils einem spezifischen Gebäudemodell und einer spezifischen Visualisierungsbeschreibung generiert werden

    An Empirical Evaluation of Visual Cues for 3D Flow Field Perception

    Get PDF
    Three-dimensional vector fields are common datasets throughout the sciences. They often represent physical phenomena that are largely invisible to us in the real world, like wind patterns and ocean currents. Computer-aided visualization is a powerful tool that can represent data in any way we choose through digital graphics. Visualizing 3D vector fields is inherently difficult due to issues such as visual clutter, self-occlusion, and the difficulty of providing depth cues that adequately support the perception of flow direction in 3D space. Cutting planes are often used to overcome these issues by presenting slices of data that are more cognitively manageable. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. The most valuable depth cue for the perception of other kinds of 3D data, notably 3D networks and 3D point clouds, is structure-from-motion (also called the Kinetic Depth Effect); another powerful depth cue is stereoscopic viewing, but none of these cues have been fully examined in the context of flow visualization. This dissertation presents a series of quantitative human factors studies that evaluate depth and direction cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The results of the studies are distilled into a set of design guidelines to improve the effectiveness of 3D flow field visualizations, and those guidelines are implemented as an immersive, interactive 3D flow visualization proof-of-concept application

    Dynamic Composite Data Physicalization Using Wheeled Micro-Robots

    Get PDF
    This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work

    Simultaneous Worlds: Supporting Fluid Exploration of Multiple Data Sets via Physical Models

    Get PDF
    We take the well-established use of physical scale models in architecture and identify new opportunities for using them to interactively visualize and examine multiple streams of geospatial data. Overlaying, comparing, or integrating visualizations of complementary data sets in the same physical space is often challenging given the constraints of various data types and the limited design space of possible visual encodings. Our vision of “simultaneous worlds” uses physical models as a substrate upon which visualizations of multiple data streams can be dynamically and concurrently integrated. To explore the potential of this concept, we created three design explorations that use an illuminated campus model to integrate visualizations about building energy use, climate, and movement paths on a university campus. We use a research through design approach, documenting how our interdisciplinary collaborations with domain experts, students, and architects informed our designs. Based on our observations, we characterize the benefits of models for 1) situating visualizations, 2) composing visualizations, and 3) manipulating and authoring visualizations. Our work highlights the potential of physical models to support embodied exploration of spatial and non-spatial visualizations through fluid interactions.Natural Sciences and Engineering Research Council (NSERC
    corecore